Abstract

We demonstrate a first-order interference between coherent light at 1580 nm and 795 nm by using a frequency-domain Mach-Zehnder interferometer (MZI). The MZI is implemented by two frequency-domain BSs based on a second-order nonlinear optical effect in a periodically-poled lithium niobate waveguide with a strong pump light. The observed visibility is over 0.99 at 50% conversion efficiencies of the BSs. Toward photonic quantum information processing, sufficiently small background photon rate is necessary. From measurement results with a superconducting single photon detector (SSPD), we discuss the feasibility of the frequency-domain MZI in a quantum regime. Our estimation shows that the single photon interference with the visibility above 0.9 is feasible with practical settings.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level

Rikizo Ikuta, Toshiki Kobayashi, Hiroshi Kato, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masahide Sasaki, Zhen Wang, Masato Koashi, and Nobuyuki Imoto
Opt. Express 21(23) 27865-27872 (2013)

Statistically background-free, phase-preserving parametric up-conversion with faint light

Y.-H. Cheng, Tim Thomay, Glenn S. Solomon, Alan L. Migdall, and Sergey V. Polyakov
Opt. Express 23(14) 18671-18678 (2015)

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [Crossref] [PubMed]
  2. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  3. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [Crossref]
  4. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
    [Crossref] [PubMed]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref] [PubMed]
  6. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
    [Crossref]
  7. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [Crossref] [PubMed]
  8. S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref] [PubMed]
  9. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
    [Crossref]
  10. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
    [Crossref]
  11. B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
    [Crossref] [PubMed]
  12. P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. D. Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 3, 1019–1024 (2016).
    [Crossref]
  13. R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
    [Crossref]
  14. C.J. McKinstrie, J.D. Harvey, S. Radic, and M.G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131 (2005).
    [Crossref] [PubMed]
  15. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  16. M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
    [Crossref]
  17. X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
    [Crossref]
  18. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
    [Crossref]
  19. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
    [Crossref]
  20. C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
    [Crossref]
  21. R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
    [Crossref]
  22. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
    [Crossref]
  23. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
    [Crossref]
  24. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
    [Crossref] [PubMed]
  25. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  26. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [Crossref] [PubMed]
  27. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [Crossref] [PubMed]
  28. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
    [Crossref]

2016 (5)

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. D. Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 3, 1019–1024 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

2014 (1)

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

2013 (5)

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

2012 (1)

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

2011 (2)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref] [PubMed]

2010 (3)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

2009 (3)

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

2008 (2)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

2005 (3)

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
[Crossref]

1990 (1)

Albrecht, B.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. D. Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 3, 1019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Albrecht, R.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Arend, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Becher, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Bernhard, C.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Bessire, B.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Beveratos, A.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Blumoff, J.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Clemmen, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Cristiani, M.

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Cui, L.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Cussey, J.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Diamanti, E.

Dudin, Y.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Emplit, P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Farrera, P.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. D. Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 3, 1019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Farsi, A.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Fedrizzi, A.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Fejer, M. M.

Feurer, T.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Fujiwara, M.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

Gaeta, A. L.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Gerrits, T.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Gisin, N.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Gonzalvo, X. F.-

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Halder, M.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Hänsch, T. W.

Harvey, J.D.

Heinze, G.

Hepp, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Hong, F.-L.

Huy, K. P.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Ikuta, R.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Imoto, N.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
[Crossref]

Jetter, M.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Jin, R.-B.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Jorel, C.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Kato, H.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kennedy, T.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Keßler, C.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Koashi, M.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
[Crossref]

Kobayashi, T.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

Kumar, P.

Kusaka, Y.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kuzmich, A.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Langford, N. K.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Langrock, C.

Lenhard, A.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Li, X.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Ma, L.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Ma, X.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Maring, N.

Massar, S.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Matsuki, K.

McKinstrie, C.J.

Merolla, J.-M.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Michler, P.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Miki, S.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mukai, T.

Nguyen, A. T.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Nishida, Y.

Nishikawa, T.

Olislager, L.

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

Ou, Z. Y.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Ozawa, A.

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Pelc, J. S.

Phillips, C. R.

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Radic, S.

Radnaev, A.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Ramelow, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Ratschbacher, L.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Raymer, M.G.

Riedmatten, H. D.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. D. Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 3, 1019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Roussev, R. V.

Sasaki, M.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Shimizu, R.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Slattery, O.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Stefanov, A.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Takeoka, M.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Takesue, H.

Tang, X.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm : performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Terai, H.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

Thew, R. T.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Wakabayashi, R.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Wang, Z.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

Yamamoto, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
[Crossref]

Yamamoto, Y.

Yamashita, T.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Sasaki, Z. Wang, M. Koashi, and N. Imoto, “Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level,” Opt. Express 21, 27865–27872 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Yang, L.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Yasui, S.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

Yu, D.

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

Zaske, S.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Zbinden, H.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Zeilinger, A.

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

Zhang, Q.

Zhao, R.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

Nat. Commun. (2)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

B. Albrecht, P. Farrera, X. F.- Gonzalvo, M. Cristiani, and H. D. Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong-Ou-Mandel interference,” Nat. Photon. 10, 441–444 (2016).
[Crossref]

Nat. Photonics (1)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Nature (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New J. Phys. 10, 023027 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Phys. Rev. A (6)

M. Koashi, T. Yamamoto, and N. Imoto, “Probabilistic manipulation of entangled photons,” Phys. Rev. A 63, 030301(R) (2001).
[Crossref]

X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, “All-fiber source of frequency-entangled photon pairs,” Phys. Rev. A 79, 033817 (2009).
[Crossref]

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Phys. Rev. Lett. (5)

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501 (2008).
[Crossref] [PubMed]

S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete Tunable Color Entanglement,” Phys. Rev. Lett. 103, 253601 (2009).
[Crossref]

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and A. Kuzmich, “Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light,” Phys. Rev. Lett. 105, 260502 (2010).
[Crossref]

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Quantum Sci. Technol. (1)

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The concept of frequency-domain Mach-Zehnder interferometer
Fig. 2
Fig. 2 Experimental setup. The lower frequency light (1580 nm) is partially upconverted to the upper frequency light (795 nm) by three wave mixing with a strong cw pump light at 1600 nm. The upper and lower frequency lights are made to interfere at PPLN2 and measured by power meters PMU and PML.
Fig. 3
Fig. 3 (a) Pump power dependencies of the interference visibility of the upper (circles) and the lower (triangles) frequency modes. (b) The observed interference fringes of upper (circles) and lower (triangles) frequency modes at P1 = 140 mW.
Fig. 4
Fig. 4 The theoretical model with lossless frequency-domain BSs and loss media which represent the observed transmittance and virtual loss.
Fig. 5
Fig. 5 Internal conversion efficiencies of (a) PPLN1 and (b) PPLN2. The curves are obtained by the best fit to R1(P1) and R2(TPP1) with A sin 2 ( η P ), where the fitting parameters A and η have been estimated to be 0.94 and 0.0042 / mW for R1(P1) and 0.58 and 0.017 / mW for R2(TPP1).
Fig. 6
Fig. 6 Dependencies of the background noise photons on the pump power P1. (a) The circles and squares represent the background noises dU,1 and dU,2 at 795 nm generated from PPLN1 and PPLN2, respectively. The dashed and dotted curves is obtained by the best fit to the experimental data with A P 1 2 + B P 1 + C, where the fitting parameters A, B and C are 3.5 × 103 / mW2, 4.6 × 102 / mW and 9.1 × 103 for dU,1, and are 2.0 × 103/mW2, 2.9 × 103 / mW and 4.8 × 104 for dU,2. (b) The circles represent the background noises dL at 1580 nm. The solid curve is obtained by the best fit to the experimental data with AP1 + B, where the fitting parameters A and B are 6.2 × 103 per mW and 2.6 × 104.
Fig. 7
Fig. 7 The expected interference visibilities in (a) the upper and (b) the lower frequency modes for a single photon as a function of Δ̃f,Uin and Δ̃f,Lin in the cases of the average photon number of 1 (solid curve), 0.1 (dashed curve) and 0.01 (dotted curve) at P = 140 mW. The vertical dashed lines represents the bandwidth of 1.4 × Δin.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H ^ = i ( χ * a ^ L a ^ U χ a ^ L a ^ U ) ,
a ^ U , out = U ^ a ^ U U ^ = cos ( | χ | τ ) a ^ U e i ϕ P sin ( | χ | τ ) a ^ L
a ^ L , out = U ^ a ^ L U ^ = e i ϕ P sin ( | χ | τ ) a ^ U + cos ( | χ | τ ) a ^ L ,
p U = ψ | L U ^ MZI a ^ U a ^ U U ^ MZI | ψ L = | R 1 T 2 + e i δ ϕ T 1 R 2 | 2 ψ | L a ^ L a ^ L | ψ L ,
p L = ψ | L U ^ MZI a ^ L a ^ L U ^ MZI | ψ L = | T 1 T 2 + e i δ ϕ R 1 R 2 | 2 ψ | L a ^ L a ^ L | ψ L ,
V U = 2 R 1 T 1 R 2 T 2 R 1 T 2 + T 1 R 2 ,
V L = 2 R 1 T 1 R 2 T 2 R 1 R 2 + T 1 T 2 .
V U ( P 1 ) = 2 R 1 ( P 1 ) T 1 ( P 1 ) R 2 ( T P P 1 ) T 2 ( T P P 1 ) T U T L x 1 x 2 R 1 ( P 1 ) T 2 ( T P P 1 ) T U x 1 + T 1 ( P 1 ) R 2 ( T P P 1 ) T L x 2 ,
V L ( P 1 ) = 2 R 1 ( P 1 ) T 1 ( P 1 ) R 2 ( T P P 1 ) T 2 ( T P P 1 ) T U T L x 1 / x 2 R 1 ( P 1 ) R 2 ( T P P 1 ) T U x 1 / x 2 + T 1 ( P 1 ) T 2 ( T P P 1 ) T L .
n U ( P 1 , Δ ˜ f , U / Δ in ) = ( d U , 1 ( P 1 ) + d U , 2 ( P 1 ) ) 4 ln 2 π Δ f , U Δ f , U Δ in ,
n L ( P 1 , Δ ˜ f , L / Δ in ) = d L ( P 1 ) 4 ln 2 π Δ f , L Δ ˜ f , L Δ in .
V ˜ U = 2 R 1 ( P 1 ) T 1 ( P 1 ) R 2 ( T P P 1 ) T 2 ( T P P 1 ) T U T L x 1 x 2 R 1 ( P 1 ) T 2 ( T P P 1 ) T U x 1 + T 1 ( P 1 ) R 2 ( T P P 1 ) T L x 2 + n U ( P 1 , Δ ˜ f , U / Δ in ) / ( μ T L , in T ˜ U , out ) ,
V ˜ L = 2 R 1 ( P 1 ) T 1 ( P 1 ) R 2 ( T P P 1 ) T 2 ( T P P 1 ) T U T L x 1 / x 2 R 1 ( P 1 ) R 2 ( T P P 1 ) T U x 1 / x 2 + T 1 ( P 1 ) T 2 ( T P P 1 ) T L + n L ( P 1 , Δ ˜ f , L / Δ in ) / ( μ T L , in T ˜ L , out ) .

Metrics