Abstract

Recent developments in optical endomicroscopy (OEM) and associated fluorescent SmartProbes present a need for sensitive imaging with high detection performance. Inter-core coupling within coherent fiber bundles is a well recognized limitation, affecting the technology’s imaging capabilities. Fiber cross coupling has been studied both experimentally and within a theoretical framework (coupled mode theory), providing (i) insights on the factors affecting cross talk, and (ii) recommendations for optimal fiber bundle design. However, due to physical limitations, such as the tradeoff between cross coupling and core density, cross coupling can be suppressed yet not eliminated through optimal fiber design. This study introduces a novel approach for measuring, analyzing and quantifying cross coupling within coherent fiber bundles, in a format that can be integrated into a linear model, which in turn can enable computational compensation of the associated blurring introduced to OEM images.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging

Xianpei Chen, Kristen Lantz Reichenbach, and Chris Xu
Opt. Express 16(26) 21598-21607 (2008)

Numerical analysis of light propagation in image fibers or coherent fiber bundles

Kristen Lantz Reichenbach and Chris Xu
Opt. Express 15(5) 2151-2165 (2007)

High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking

Michael Hughes and Guang-Zhong Yang
Biomed. Opt. Express 6(4) 1241-1252 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
    [Crossref] [PubMed]
  2. M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009).
    [Crossref] [PubMed]
  3. Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).
  4. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
    [Crossref] [PubMed]
  5. T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
    [Crossref]
  6. F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
    [Crossref] [PubMed]
  7. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).
  8. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
    [Crossref] [PubMed]
  9. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
    [Crossref]
  10. R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
    [Crossref] [PubMed]
  11. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).
  12. N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
    [Crossref] [PubMed]
  13. N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
    [Crossref] [PubMed]
  14. A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
    [Crossref]
  15. A. W. Snyder and P. McIntyre, “Crosstalk between light pipes,” J. Opt. Soc. Am. 66(9), 877–882 (1976).
    [Crossref]
  16. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [Crossref] [PubMed]
  17. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [Crossref] [PubMed]
  18. J. Wang and S. K. Nadkarni, “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns,” Opt. Express 22(8), 8908–8918 (2014).
    [Crossref] [PubMed]
  19. N. Ortega-Quijano, J. L. Arce-Diego, and F. Fanjul-Vélez, “Quality limiting factors of imaging endoscopes based on optical fiber bundles,” in Proc. SPIE 6991 (SPIE, 2008), pp. 69910U.
  20. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
    [Crossref]
  21. N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, Ó. R. Hernández-Cubero, and J. L. Arce-Diego, “Analysis of optical crosstalk in flexible imaging endoscopes based on multicore fibers,” in Proc. SPIE 7715 (SPIE, 2010), pp. 77152B.
  22. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  23. H. Wood, K. Harrington, J. M. Stone, T. A. Birks, and J. C. Knight, “Quantitative characterization of endoscopic imaging fibers,” Opt. Express 25(3), 1985–1992 (2017).
    [Crossref]
  24. J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
    [Crossref]
  25. M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14(2), 24–41 (1997).
    [Crossref]
  26. J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
    [Crossref]
  27. A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).
  28. J. M. Stone, H. A. Wood, K. Harrington, and T. A. Birks, “Low index contrast imaging fibers,” Opt. Lett. 42(8), 1484–1487 (2017).
    [Crossref] [PubMed]
  29. S. Suzaki and K. Seto, “Standard specifications for image fibers” (Fujikura Ltd., 2016), retrieved 2017, http://www.fujikura.co.jp/eng/products/optical/appliedoptics/03/2050110_12902.html .
  30. T. Vercauteren, “Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy,” (Mines ParisTech, Paris, 2008).
  31. C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
    [Crossref]
  32. A. Karam Eldaly, Y. Altmann, A. Perperidis, N. Krstajić, T. R. Choudhary, K. Dhaliwal, and S. McLaughlin, “Deconvolution and Restoration of Optical Endomicroscopy Images” (2017), retrieved 2017, https://arxiv.org/abs/1701.08107 .
  33. F. Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Trans. Image Process. 12(9), 1094–1106 (2003).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

2015 (3)

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

2014 (2)

J. Wang and S. K. Nadkarni, “The influence of optical fiber bundle parameters on the transmission of laser speckle patterns,” Opt. Express 22(8), 8908–8918 (2014).
[Crossref] [PubMed]

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

2013 (2)

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

2012 (1)

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

2011 (2)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

2010 (1)

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

2009 (3)

M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
[Crossref] [PubMed]

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

2003 (1)

F. Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Trans. Image Process. 12(9), 1094–1106 (2003).
[Crossref] [PubMed]

2002 (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

1999 (1)

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]

1997 (1)

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14(2), 24–41 (1997).
[Crossref]

1976 (1)

1972 (1)

Abrams, J. A.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Akram, A. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Aslam, T.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Avlonitis, N.

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Bajbouj, M.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Banham, M. R.

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14(2), 24–41 (1997).
[Crossref]

Bansal, A.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
[Crossref]

Birks, T. A.

Bourg Heckly, G.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

Bourg-Heckly, G.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Bradley, M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Cavé, C.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

Chang, T. C.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Chankeshwara, S. V.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

Chen, X.

Choudhary, T. R.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Coron, E.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Dalgarno, P. A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Darzi, A.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Debunne, M.

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Dhaliwal, K.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Dominique, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Elson, D. S.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Figueiredo, M. A. T.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
[Crossref]

Flusser, J.

F. Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Trans. Image Process. 12(9), 1094–1106 (2003).
[Crossref] [PubMed]

Fockens, P.

M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009).
[Crossref] [PubMed]

Fuchs, F. S.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Galmiche, J.-P.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Gambhir, S. S.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Girkin, J. M.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Gorbet, M.

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

Gupta, N.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Harrington, K.

Haslett, C.

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Hawkes, D. J.

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]

Hildner, K.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Hill, D. L. G.

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]

Hirani, N.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

Kang, L.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Katsaggelos, A. K.

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14(2), 24–41 (1997).
[Crossref]

Kemp, S. V.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Knight, J. C.

Krstajic, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Lachkar, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Lauwers, G. Y.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Liao, J. C.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Lightdale, C. J.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Lilienkampf, A.

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

Liu, J.-J.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Mach, K. E.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

McDonald, N.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

McIntyre, P.

Megia-Fernandez, A.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

Meining, A. R.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Metzner, T. J.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Michalek, J. E.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Michels, C.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

Miele, A.

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

Moore, A.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Moreno-Swirc, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Murtagh, F.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Nadkarni, S. K.

Neurath, M. F.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Newton, R. C.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Oliveira, J. P.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
[Crossref]

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Pan, Y.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Pantin, E.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Pedretti, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Peltier, E.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

Perez-Lopez, A. M.

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

Pierce, M.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).

Rastogi, A.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Reichenbach, K. L.

Richards-Kortum, R.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).

Rouse, R. V.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Sahoo, D.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Salaün, M.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Scholefield, E.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

Schubert, J.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Shah, P. L.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Sharma, P.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Skinner, E. C.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Snyder, A. W.

Sroubek, F.

F. Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Trans. Image Process. 12(9), 1094–1106 (2003).
[Crossref] [PubMed]

Starck, J. L.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Stone, J. M.

Studholme, C.

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]

Tanner, M. G.

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

Thiberville, L.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

van de Rijn, M.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Vercauteren, T.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

Vever-Bizet, C.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

Vieth, M.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Volkmer, J.-P.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Wallace, M. B.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009).
[Crossref] [PubMed]

Wang, J.

Wang, X. Y.

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

Weissman, I. L.

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Wolfsen, H. C.

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

Wong, A.

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

Wood, H.

Wood, H. A.

Xu, C.

Yang, G.-Z.

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Yu, D.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).

Zirlik, S.

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

Am. J. Respir. Crit. Care Med. (1)

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In Vivo Imaging Of The Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (2)

T. Aslam, A. Miele, S. V. Chankeshwara, A. Megia-Fernandez, C. Michels, A. R. Akram, N. McDonald, N. Hirani, C. Haslett, M. Bradley, and K. Dhaliwal, “Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue,” Chem. Sci. (Camb.) 6(8), 4946–4953 (2015).
[Crossref]

A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N. McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley, and K. Dhaliwal, “A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue,” Chem. Sci. (Camb.) 6(12), 6971–6979 (2015).
[Crossref]

Eur. Respir. J. (2)

F. S. Fuchs, S. Zirlik, K. Hildner, J. Schubert, M. Vieth, and M. F. Neurath, “Confocal laser endomicroscopy for diagnosing lung cancer in vivo,” Eur. Respir. J. 41(6), 1401–1408 (2013).
[Crossref] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Gastroenterology (1)

M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology 136(5), 1509–1513 (2009).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

P. Sharma, A. R. Meining, E. Coron, C. J. Lightdale, H. C. Wolfsen, A. Bansal, M. Bajbouj, J.-P. Galmiche, J. A. Abrams, A. Rastogi, N. Gupta, J. E. Michalek, G. Y. Lauwers, and M. B. Wallace, “Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointest. Endosc. 74(3), 465–472 (2011).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Process. Mag. 14(2), 24–41 (1997).
[Crossref]

IEEE Trans. Image Process. (1)

F. Sroubek and J. Flusser, “Multichannel blind iterative image restoration,” IEEE Trans. Image Process. 12(9), 1094–1106 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. Krstajić, A. R. Akram, T. R. Choudhary, N. McDonald, M. G. Tanner, E. Pedretti, P. A. Dalgarno, E. Scholefield, J. M. Girkin, A. Moore, M. Bradley, and K. Dhaliwal, “Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue,” J. Biomed. Opt. 21(4), 46009 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Thorac. Oncol. (1)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “In vivo confocal fluorescence endomicroscopy of lung cancer,” J. Thorac. Oncol. 4(9), S48–S51 (2009).

J. Vis. Experiments (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging,” J. Vis. Experiments 47, 2306 (2011).

Opt. Commun. (1)

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Org. Biomol. Chem. (1)

N. Avlonitis, M. Debunne, T. Aslam, N. McDonald, C. Haslett, K. Dhaliwal, and M. Bradley, “Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase,” Org. Biomol. Chem. 11(26), 4414–4418 (2013).
[Crossref] [PubMed]

Pattern Recognit. (1)

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999).
[Crossref]

Publ. Astron. Soc. Pac. (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in Astronomy: A Review,” Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002).
[Crossref]

Respir. Med. (1)

R. C. Newton, S. V. Kemp, G.-Z. Yang, D. S. Elson, A. Darzi, and P. L. Shah, “Imaging parenchymal lung diseases with confocal endomicroscopy,” Respir. Med. 106(1), 127–137 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

Sci. Translational Med. (1)

Y. Pan, J.-P. Volkmer, K. E. Mach, R. V. Rouse, J.-J. Liu, D. Sahoo, T. C. Chang, T. J. Metzner, L. Kang, M. van de Rijn, E. C. Skinner, S. S. Gambhir, I. L. Weissman, and J. C. Liao, “Endoscopic molecular imaging of human bladder cancer using a CD47 antibody,” Sci. Translational Med. 6(260), 260ra148 (2014).

Other (7)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” in Proceedings of the American Thoracic Society (American Thoracic Society, 2009), pp. 444–449.
[Crossref]

N. Ortega-Quijano, F. Fanjul-Vélez, I. Salas-García, Ó. R. Hernández-Cubero, and J. L. Arce-Diego, “Analysis of optical crosstalk in flexible imaging endoscopes based on multicore fibers,” in Proc. SPIE 7715 (SPIE, 2010), pp. 77152B.

N. Ortega-Quijano, J. L. Arce-Diego, and F. Fanjul-Vélez, “Quality limiting factors of imaging endoscopes based on optical fiber bundles,” in Proc. SPIE 6991 (SPIE, 2008), pp. 69910U.

S. Suzaki and K. Seto, “Standard specifications for image fibers” (Fujikura Ltd., 2016), retrieved 2017, http://www.fujikura.co.jp/eng/products/optical/appliedoptics/03/2050110_12902.html .

T. Vercauteren, “Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy,” (Mines ParisTech, Paris, 2008).

A. Karam Eldaly, Y. Altmann, A. Perperidis, N. Krstajić, T. R. Choudhary, K. Dhaliwal, and S. McLaughlin, “Deconvolution and Restoration of Optical Endomicroscopy Images” (2017), retrieved 2017, https://arxiv.org/abs/1701.08107 .

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach,” in Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Optical system utilised for illuminating (laser at 635nm and 520nm) a single core within a coherent fibre bundle, and recording the coupling of light across its immediate and extended neighbouring cores. A 470nm LED light was also employed to acquire widefield microscopy (WFM) images of the fibre cores.

Fig. 2
Fig. 2

Optical setup employing aspheric lenses L 1 and L 2 , with corresponding of focal lengths of f 1 and f 2 , to resize the Gaussian Point Spread Function (PSF) of an illuminating laser spot, preventing it from overlapping neighbouring cores.

Fig. 3
Fig. 3

Data acquisition protocols for (a) determining the focal lengths of aspheric lenses L 1 and L 2 to ensure optimal resizing of laser spots y 1 and y 2 so that light fills individual cores without overlapping to neighbouring cores, and (b) illuminating individual cores and capturing the coupled light across its immediate and extended neighbours.

Fig. 4
Fig. 4

Analysis protocol for measuring and quantifying coupling of light to the central (illuminated core) as well as its immediate and extended neighbours.

Fig. 5
Fig. 5

Diagram describing the process of repeating 5 cores within a 25-core region of interest (ROI), vectorising the coupling pattern extracted from the associated images [c1,…, c25], and identifying the matching original core based on the coupling pattern similarity. In this example, the vectorised pattern of repeated core r1 matches with c2, the second core in the 25-core ROI.

Fig. 6
Fig. 6

Characteristic examples of (a) Scanning Electron Microscopy (SEM), and (b) widefield microscopy (WFM – 635nm) of a coherent fibre bundle. (c) An example of the binary image, derived using Otsu’s method on a WFM image, highlighting the pixels corresponding to fibre cores.

Fig. 7
Fig. 7

Example of a binary mask highlighting the cores with (a) the relevant Delaunay triangulation linking cores, and (b) the associated grouping of cores to immediate (green) and extended neighbours (blue, cyan, magenta and yellow).

Fig. 8
Fig. 8

Examples of coupling spread patterns broadly categorised into three classes with, (a) and (d) relative even spread amongst neighbours, fading with distance, (b) and (e) seemingly random spread in both location and magnitude across the neighbourhood, and (c) and (f) a combination of the even spread implanted with random cores of high coupling. Examples for both acquisition wavelengths provided – 635nm (top) and 520nm (bottom).

Fig. 9
Fig. 9

Histograms providing a visual representation of the distributions of the proportion of light at 635nm coupled in the central core as well as the cores of each of the neighbouring layers. The mean and median (green and red lines respectively) proportion of light for the cores of each layer are also provided.

Fig. 10
Fig. 10

Histograms providing a visual representation of the distributions of the proportion of light at 520nm coupled in the central core as well as the cores of each of the neighbouring layers. The mean and median (green and red lines respectively) proportion of light for the cores of each layer are also provided.

Fig. 11
Fig. 11

Plots of the distance (in pixels) of each core to the corresponding central (illuminated) core against the associated proportion of light coupled through the core at (a) 635nm and (b) 520nm. Cores are grouped into their respective neighbouring layers from immediate (green) to extended (blue, cyan, magenta and yellow).

Fig. 12
Fig. 12

Overall light variation over the duration of the acquisition process (12 ROIs) (a) transmitted along the whole fibre, and (b-c) as a proportion coupled through the central core and cumulatively each neighbouring layer at 635nm and 520nm respectively.

Fig. 13
Fig. 13

Illustrative examples of coupling pattern similarity (NMI) of a repeated core against the coupling patterns of all the 25 cores in the associated ROI. In particular, each line illustrates the measured similarity (NMI) between the coupling pattern of a chosen repeated core against the coupling patterns of all the 25 cores in the associated ROI. The asterisk indicates the number of the core within the 25-core ROI that matches the chosen repeated core. High similarity is expected for matching cores (asterisk). (a) Three repeated core examples within a 25 core ROI using 635nm acquisition wavelength, (b-c) six further examples, from two different ROIs, using 520nm acquisition wavelength.

Fig. 14
Fig. 14

Distribution spread of the coupling pattern similarity between the repeated cores and their matching original cores (blue), as well as the similarity between the repeated cores and the other 24 cores in their respective ROI (orange), at (a) 635nm and (b) 520nm.

Fig. 15
Fig. 15

Example of cross coupling effect on simulated (a-c) and real (d-f) OEM images of the USAF chart. (a) Binary image of USAF chart, fibre-core locations overlaid, (b) interpolated image of USAF chart, based on values at core locations, (c) interpolated image after applying estimated cross coupling. (d) Real OEM image of fluorescent USAF chart. (e) Interpolated version of (d), based on values at core locations. (f) post processed version of (e), estimating the original de-convolved data.

Fig. 16
Fig. 16

Cross sections across the top, and bottom of the original and the cross-coupled simulated images in Fig. 15 (b) and (c).

Tables (6)

Tables Icon

Table 1 Fujikura coherent fibre bundle specifications [29].

Tables Icon

Table 2 Fibre-coupled laser spots’ Point Spread Functions (PSFs) measured at the end of the Single Mode Fibre (SMF) source at 520nm and 635nm. Mean nearest-neighbour spacing employed as estimate of core size.

Tables Icon

Table 3 Properties extracted from the automatic analysis of the binary mask highlighting each core within a widefield microscopy (WFM) image of the fibre bundle.

Tables Icon

Table 4 Fibre properties as extracted from different imaging modes.

Tables Icon

Table 5 Coupling per individual core. Mean, standard deviation and median of the proportion of light coupled in the central and each neighbouring core (grouped in relevant layers).

Tables Icon

Table 6 Coupling per neighbouring layer. Mean and median of the proportion of light coupled in the central core and each layer of immediate and extended neighbours as a whole.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

v=Hu+w
y 1 f 1 = y 2 f 2
arg f 1 , f 1 min| d ¯ ( f 2 f 1 )4σ |,
p i = k i /K, with p i >0 and i0 L1 p i =1
σ w 2 ( t )= q 1 ( t ) σ 1 2 ( t )+ q 2 ( t ) σ 2 2 ( t )
B R ( x,y )={ 1, {(x,y)| I(x,y)t} 2, {(x,y)| I(x,y)<t}
argmax t x t y S( I R ,T( I c,R ))
Y(S P c ,S P cr )= H(S P c )+H(S P cr ) H(S P c ,S P cr )
v=Hu+w
min x 1 2 Huv 2 2 +λϕ(u)

Metrics