Abstract

We report tunable VCSELs emitting around 1060 nm, enabled by high-contrast grating (HCG) mirror. Single-mode continuous-wave (CW) operation up to 110 °C is demonstrated, with room-temperature single-mode output power >1.3 mW at a very low threshold of ~300 µA. The obtained thermal resistance of 0.88 °C/mW is low for VCSELs with an oxide-confined laser aperture. A wide, continuous tuning range up to 40 nm was achieved with electrostatic and thermal tuning, at a fast tuning speed up to 1.15 MHz. In addition, we developed transverse-mode control designs of HCGs to greatly improve the single-mode yield of oxidized VCSELs. The cost-effective, wafer-scale fabrication makes these VCSELs promising as tunable light sources for swept-source optical coherent tomography (SS-OCT) and LiDAR applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning

Ye Zhou, Michael C. Y. Huang, and Connie J. Chang-Hasnain
Opt. Express 16(18) 14221-14226 (2008)

Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs

Pengfei Qiao, Guan-Lin Su, Yi Rao, Ming C. Wu, Connie J. Chang-Hasnain, and Shun Lien Chuang
Opt. Express 22(7) 8541-8555 (2014)

Nano electro-mechanical optoelectronic tunable VCSEL

Michael C.Y. Huang, Ye Zhou, and Connie J. Chang-Hasnain
Opt. Express 15(3) 1222-1227 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Szweda, “VCSEL applications diversify as technology matures,” III–Vs Review 19(1), 34–38 (2006).
    [Crossref]
  2. C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
    [Crossref]
  3. C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
    [Crossref]
  4. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [Crossref]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  7. B. Potsaid, V. Jayaraman, J. Y. Jiang, P. J. S. Heim, I. Grulkowski, J. G. Fujimoto, and A. E. Cable, “1065nm and 1310nm MEMS tunable VCSEL light source technology for OCT imaging,” in SPIE Biomedical Optics & Medical Imaging (2012), paper 10.1117.
  8. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  9. P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
    [Crossref]
  10. B. Behroozpour, N. Quack, P. Sandborn, S. Gerke, W. Yang, C. Chang-Hasnain, M. C. Wu, and B. E. Boser, “Method for increasing the operating distance of MEMS LIDAR beyond Brownian noise limitation,” in Conference on Lasers and Electro-Optics (IEEE 2014), paper AW3H.2.
    [Crossref]
  11. B. Povazay, B. Hermann, V. Kajic, B. Hofer, and W. Drexler, “High speed, spectrometer based optical coherence tomography at 1050 nm for isotropic 3D OCT imaging and visulization of retinal and choroidal vasculature,” in Proc. Biomed. Opt. OCT Opthalmic Appl. (2008), pp. 2733–2751.
  12. F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
    [Crossref]
  13. E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
    [Crossref]
  14. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
    [Crossref] [PubMed]
  15. T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).
  16. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  17. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  19. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  20. K. Li, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm high-contrast grating VCSEL,” in Compound Semiconductor Week (CSW, IEEE2016), paper MoC4–2.
  21. S. L. Chuang, Physics. of Photonic Devices (Wiley, 2009), p. 411.
  22. W. Yang and C. J. Chang-Hasnain, “High contrast grating solver package,” University of California at Berkeley (2014), https://light.eecs.berkeley.edu/cch/hcgsolver.html .
  23. M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
    [Crossref]
  24. B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
    [Crossref]
  25. K. Lascola, “Master degree dissertation: modeling of vertical cavity surface emitting lasers,” University of California at Berkeley (1997).
  26. B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
    [Crossref]
  27. M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
    [Crossref]
  28. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
    [Crossref] [PubMed]
  29. C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
    [Crossref]
  30. P. Qiao, L. Zhu, W. C. Chew, and C. J. Chang-Hasnain, “Theory and design of two-dimensional high-contrast-grating phased arrays,” Opt. Express 23(19), 24508–24524 (2015).
    [Crossref] [PubMed]
  31. P. Qiao, G.-L. Su, Y. Rao, M. C. Wu, C. J. Chang-Hasnain, and S. L. Chuang, “Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs,” Opt. Express 22(7), 8541–8555 (2014).
    [Crossref] [PubMed]
  32. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
    [Crossref] [PubMed]
  33. P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
    [Crossref]
  34. A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
    [Crossref] [PubMed]
  35. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
    [Crossref] [PubMed]
  36. A. Taghizadeh, J. Mork, and I. Chung, “Vertical-cavity in-plane heterostructures: physcis and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
    [Crossref]
  37. M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
    [Crossref] [PubMed]
  38. W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).
  39. K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Beam-Shaping Single-Mode VCSEL With A High-Contrast Grating Mirror,” in Conference on Lasers and Electro-Optics (IEEE 2016), paper SF1L.
    [Crossref]
  40. F. Koyama, “Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs,” Proc. SPIE 8995, 89950H (2014).
    [Crossref]

2015 (4)

2014 (5)

2013 (3)

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

2012 (5)

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

2009 (1)

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

2006 (1)

R. Szweda, “VCSEL applications diversify as technology matures,” III–Vs Review 19(1), 34–38 (2006).
[Crossref]

2003 (1)

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

2000 (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

1997 (3)

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

1991 (3)

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

1990 (1)

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Amann, M.-C.

Ansbaek, T.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

Bengtsson, J.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Bimberg, D.

Böhm, G.

Burgner, C. B.

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

P. Qiao, L. Zhu, W. C. Chew, and C. J. Chang-Hasnain, “Theory and design of two-dimensional high-contrast-grating phased arrays,” Opt. Express 23(19), 24508–24524 (2015).
[Crossref] [PubMed]

P. Qiao, G.-L. Su, Y. Rao, M. C. Wu, C. J. Chang-Hasnain, and S. L. Chuang, “Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs,” Opt. Express 22(7), 8541–8555 (2014).
[Crossref] [PubMed]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

Chew, W. C.

Chinn, S. R.

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Choi, W. J.

Chuang, S. L.

Chung, I.

A. Taghizadeh, J. Mork, and I. Chung, “Vertical-cavity in-plane heterostructures: physcis and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Chung, I.-S.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

Czyszanowski, T.

Davani, H. A.

Debernardi, P.

Dems, M.

Deng, H.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Duker, J. S.

Ebeling, K. J.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ferrara, J.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gebski, M.

Gierl, C.

Gill, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Grabherr, M.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Grasse, C.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gruendl, T.

Grulkowski, I.

Grutter, K.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Gustavsson, J. S.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Haglund, Å.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Haglund, E.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Harbison, J. P.

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hofmann, W.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Inoue, S.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Iqbal, M. Z.

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

Izadpanah, H.

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

Jager, R.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Jatta, S.

Jayaraman, V.

Jewell, J.

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Jiang, J.

John, D. D.

Jung, C.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Kamalov, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Kogel, B.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Koley, B.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Koyama, F.

F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
[Crossref]

F. Koyama, “Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs,” Proc. SPIE 8995, 89950H (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Ku, P. C.

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

Küppers, F.

Kuzior, O.

Lam, C.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Larsson, A.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Lee, B. K.

Lee, T.-P.

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Lehmen, A. V.

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

Li, G. S.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Linda, C.

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

Liu, A.

Liu, H.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Liu, J. J.

Lu, C. D.

Maeda, M. W.

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Matsutani, A.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

McManamon, P. F.

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

Meissner, P.

Michalzik, R.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Mork, J.

A. Taghizadeh, J. Mork, and I. Chung, “Vertical-cavity in-plane heterostructures: physcis and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Nakahama, M.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qiao, P.

Rao, Y.

P. Qiao, G.-L. Su, Y. Rao, M. C. Wu, C. J. Chang-Hasnain, and S. L. Chuang, “Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs,” Opt. Express 22(7), 8541–8555 (2014).
[Crossref] [PubMed]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Reiner, G.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Robertson, M. E.

Sakaguchi, T.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Sano, H.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Semenova, E. S.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

Sowada, D.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

Su, G.-L.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szweda, R.

R. Szweda, “VCSEL applications diversify as technology matures,” III–Vs Review 19(1), 34–38 (2006).
[Crossref]

Taghizadeh, A.

A. Taghizadeh, J. Mork, and I. Chung, “Vertical-cavity in-plane heterostructures: physcis and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Vail, E. C.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

Wang, Q. J.

Wang, Z.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Wasiak, M.

Weigl, B.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Westbergh, P.

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Wu, M. C.

P. Qiao, G.-L. Su, Y. Rao, M. C. Wu, C. J. Chang-Hasnain, and S. L. Chuang, “Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs,” Opt. Express 22(7), 8541–8555 (2014).
[Crossref] [PubMed]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Xie, Y. Y.

Xu, Z. J.

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Yeh, A.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Yue, Y.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Yuen, W.

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

Yvind, K.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

Zah, C.-E.

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Zhang, B.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Zhang, D. H.

Zhao, X.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Zhou, Y.

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Zhu, L.

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Zogal, K.

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. Taghizadeh, J. Mork, and I. Chung, “Vertical-cavity in-plane heterostructures: physcis and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

C. J. Chang-Hasnain, M. W. Maeda, N. G. Stoffel, J. P. Harbison, L. T. Florez, and J. Jewell, “Surface emitting laser arrays with uniformly separated wavelengths,” Electron. Lett. 26(13), 940–942 (1990).
[Crossref]

IEEE Commun. Mag. (1)

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

IEEE J. Quantum Electron. (3)

B. Kogel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

P. C. Ku and C. J. Chang-Hasnain, “Thermal oxidation of AlGaAs: modeling and process control,” IEEE J. Quantum Electron. 39(4), 577–585 (2003).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “High performance and novel effects of micromechanical tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 691–697 (1997).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. W. Maeda, C. J. Chang-Hasnain, A. V. Lehmen, H. Izadpanah, C. Linda, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Mluti-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” IEEE Photonics Technol. Lett. 3(10), 863–865 (1991).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photonics Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photonics Technol. Lett. 24, 455–457 (2013).

III–Vs Review (1)

R. Szweda, “VCSEL applications diversify as technology matures,” III–Vs Review 19(1), 34–38 (2006).
[Crossref]

J. Lightwave Technol. (1)

Nanophotonics (1)

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, and C. J. Chang-Hasnain, “Low loss hollow-core waveguide on a silicon substrate,” Nanophotonics 1(2012), 23–29 (2012).

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Eng. (1)

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

Opt. Express (7)

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22(10), 11804–11811 (2014).
[Crossref] [PubMed]

P. Qiao, L. Zhu, W. C. Chew, and C. J. Chang-Hasnain, “Theory and design of two-dimensional high-contrast-grating phased arrays,” Opt. Express 23(19), 24508–24524 (2015).
[Crossref] [PubMed]

P. Qiao, G.-L. Su, Y. Rao, M. C. Wu, C. J. Chang-Hasnain, and S. L. Chuang, “Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs,” Opt. Express 22(7), 8541–8555 (2014).
[Crossref] [PubMed]

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

M. Gębski, O. Kuzior, M. Dems, M. Wasiak, Y. Y. Xie, Z. J. Xu, Q. J. Wang, D. H. Zhang, and T. Czyszanowski, “Transverse mode control in high-contrast grating VCSELs,” Opt. Express 22(17), 20954–20963 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

F. Koyama, “Advances and new functions of VCSEL photonics,” Opt. Rev. 21(6), 893–904 (2014).
[Crossref]

Phys. Rev. Lett. (1)

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Koyama, “Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs,” Proc. SPIE 8995, 89950H (2014).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (8)

B. Behroozpour, N. Quack, P. Sandborn, S. Gerke, W. Yang, C. Chang-Hasnain, M. C. Wu, and B. E. Boser, “Method for increasing the operating distance of MEMS LIDAR beyond Brownian noise limitation,” in Conference on Lasers and Electro-Optics (IEEE 2014), paper AW3H.2.
[Crossref]

B. Povazay, B. Hermann, V. Kajic, B. Hofer, and W. Drexler, “High speed, spectrometer based optical coherence tomography at 1050 nm for isotropic 3D OCT imaging and visulization of retinal and choroidal vasculature,” in Proc. Biomed. Opt. OCT Opthalmic Appl. (2008), pp. 2733–2751.

B. Potsaid, V. Jayaraman, J. Y. Jiang, P. J. S. Heim, I. Grulkowski, J. G. Fujimoto, and A. E. Cable, “1065nm and 1310nm MEMS tunable VCSEL light source technology for OCT imaging,” in SPIE Biomedical Optics & Medical Imaging (2012), paper 10.1117.

K. Lascola, “Master degree dissertation: modeling of vertical cavity surface emitting lasers,” University of California at Berkeley (1997).

K. Li, C. Chase, Y. Rao, and C. J. Chang-Hasnain, “Widely tunable 1060-nm high-contrast grating VCSEL,” in Compound Semiconductor Week (CSW, IEEE2016), paper MoC4–2.

S. L. Chuang, Physics. of Photonic Devices (Wiley, 2009), p. 411.

W. Yang and C. J. Chang-Hasnain, “High contrast grating solver package,” University of California at Berkeley (2014), https://light.eecs.berkeley.edu/cch/hcgsolver.html .

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Beam-Shaping Single-Mode VCSEL With A High-Contrast Grating Mirror,” in Conference on Lasers and Electro-Optics (IEEE 2016), paper SF1L.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design of the high-contrast grating (HCG) VCSEL. (a) Cross-sectional schematics of a tunable HCG-VCSEL. (b) Simulated reflectivity contour plot of HCG thickness ( t g ) versus wavelength (λ) for TM HCG under DC = 0.6, with the white dot highlighting a high reflectivity design of λ~1060 nm and t g ~300 nm. (c) Simulated reflectivity contour plot of HCG airgap (a) versus period (Λ) at λ = 1060 nm, for a TM HCG with thickness of ~300 nm.

Fig. 2
Fig. 2

Images of finished tunable HCG-VCSEL devices. (a) Scanning electron microscope image of a typical HCG-VCSEL device, with (b) Zoomed-in view of the fully suspended HCG surrounded by air. (c) 3D confocal optical image of the fabricated HCG-VCSEL array.

Fig. 3
Fig. 3

Light-current-voltage (LIV) and thermal characteristics of the 1060-nm HCG-VCSEL. (a) The LIV characteristic of a typical HCG-VCSEL under CW operation at 20 °C, showing an output power of ~1.3 mW at 4 mA. The bottom inset images are captured by a camera from the top of the device for below lasing threshold (I < Ith) and after lasing (I = 2Ith). (b) The LI characteristics under a series of heat sink temperatures from 20 °C up to 110 °C. Output power is reduced while threshold current does not have obvious decrease. The IV characteristic at 20 °C is also shown and remains similar with temperature increase. (c) Wavelength shift versus temperature (20-110 °C) under a bias current of 4 mA, showing a fitted dλ/dT ~0.061 nm/°C. (d) Wavelength shift versus injection current ( I th -4 I th ) at 20°C, multiplying with the corresponding voltage, a fitted wavelength shift versus dissipated thermal power dλ/dP ~0.054 nm/mW is achieved. The calculated ratio of the above two gives a thermal resistance R th of ~0.88 °C/mW for the tested device.

Fig. 4
Fig. 4

Wavelength tuning characteristics of the 1060-nm HCG VCSEL. (a) Single-mode continuous wavelength tuning of 40 nm, including 34 nm of mechanical tuning and 6 nm of thermal tuning. (b) Reflectivity contour of the reflection mirrors (including the top compound HCG mirror layers and the bottom DBR mirror) during tuning, with the resonance wavelength of the corresponding cavity indicated for each tuning airgap (triangular data points), showing a theoretical tuning range of 47 nm for this HCG-VCSEL structure if limited by the FSR of the cavity design. (c) Lasing wavelength versus tuning voltage. The black dots are measurement data from (a), and the red curve is calculated with Eq. (2) and information from Fig. 4(b). (d) Frequency response of the mechanical tuning, with a resonance frequency of 600 kHz and a −3 dB bandwidth of 1.15 MHz. The red circles are the measurement results and the red line is the fitted result with a harmonic oscillator model. (e) Tuning response of HCG MEMS simulated in COMSOL, showing the spatial displacement of the fundamental eigenmode, with the color indicating the displacement in an arbitrary unit and the lower bound being zero, resulting in a resonance frequency of 540 kHz.

Fig. 5
Fig. 5

Angular-dependence of HCG reflectivity facilitates transverse mode control of VCSEL. (a) Schematics of the HCG bars with period Λ, airgap a, incidence angle θwith repect to z-axis and ψ with respect to x-axis. (b) Reflectivity contour (R>99.5%) of HCG airgap versus incidence angle θ, of an HCG with period Λ~505 nm. While design I shows high reflectivity up to θ=5° v, the reflectivity of design II drastically decreases above θ=1° . Reflectivity versus angle (i), IR image of oxidation aperture (ii), and measured laser spectra under a series of injection currents (iii), for (c) HCG design I with Λ~505 nm and a~140 nm; and (d) HCG design II with Λ~505 nm and a~105 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R th = ΔT ΔP = Δλ/ΔP  Δλ/ΔT
F electrostatic F elastic = ϵA V 2 2 g 2 k( g 0 g)=0

Metrics