Abstract

Simultaneous point measurements of gas velocity and temperature were recently demonstrated using thermographic phosphors as tracer particles. There, continuous wave (CW) excitation was used and the spectral shift of the luminescence was detected with a two-colour intensity ratio method to determine the gas temperature. The conventional laser Doppler velocimetry (LDV) technique was employed for velocimetry. In this paper, an alternative approach to the gas temperature measurements is presented, which is instead based on the temperature-dependence of the luminescence lifetime. The phase-shift between the luminescence signal and time-modulated excitation light is evaluated for single BaMgAl10O17:Eu2+ phosphor particles as they cross the probe volume. Luminescence lifetimes evaluated in the time domain and frequency domain indicate that in these experiments, interferences from in-phase signals such as stray excitation laser light are negligible. The dependence of the phase-shift on flow temperature is characterised. In the temperature sensitive range above 700 K, precise gas temperature measurements can be obtained (8.6 K at 840 K) with this approach.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles

Christopher Abram, Benoit Fond, and Frank Beyrau
Opt. Express 23(15) 19453-19468 (2015)

Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles

Benoit Fond, Christopher Abram, Andrew L Heyes, Andreas M Kempf, and Frank Beyrau
Opt. Express 20(20) 22118-22133 (2012)

Investigation of the tin-doped phosphor (Sr,Mg)3(PO4)2:Sn2+ for fluid temperature measurements

Benoît Fond, Christopher Abram, Miriam Pougin, and Frank Beyrau
Opt. Mater. Express 9(2) 802-818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
    [Crossref]
  2. N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
    [Crossref]
  3. B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
    [Crossref] [PubMed]
  4. C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
    [Crossref]
  5. H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
    [Crossref]
  6. A. O. Ojo, B. Fond, B. G. M. Van Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser Doppler velocimetry,” Opt. Lett. 40(20), 4759–4762 (2015).
    [Crossref] [PubMed]
  7. N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
    [Crossref]
  8. W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption,” J Sol. Energ. 123(1), 30–42 (2001).
    [Crossref]
  9. A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
    [Crossref] [PubMed]
  10. A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
    [Crossref]
  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  12. B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
    [Crossref]
  13. G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
    [Crossref]
  14. R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
    [Crossref]
  15. S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
    [Crossref]
  16. Á. Yáñez-González, “Phosphorescent thermal history sensors for extreme environments,” PhD thesis, (Mech. Eng, Imperial College London, 2015).
  17. R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158(1), 361–376 (1969).
    [Crossref] [PubMed]
  18. C. Abram, B. Fond, and F. Beyrau, “Simultaneous temperature and velocity measurements in fluid flows using thermographic phosphor tracer particles: A review,” Prog. Energ. Combust, in revision.
  19. L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
    [Crossref]

2016 (1)

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

2015 (2)

A. O. Ojo, B. Fond, B. G. M. Van Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser Doppler velocimetry,” Opt. Lett. 40(20), 4759–4762 (2015).
[Crossref] [PubMed]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
[Crossref]

2013 (3)

N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
[Crossref]

N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

2012 (1)

2010 (1)

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

2008 (2)

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
[Crossref]

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

2007 (1)

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

2004 (2)

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[Crossref] [PubMed]

A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
[Crossref]

2001 (2)

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption,” J Sol. Energ. 123(1), 30–42 (2001).
[Crossref]

1969 (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158(1), 361–376 (1969).
[Crossref] [PubMed]

Abram, C.

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Alden, M.

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

Aldén, M.

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
[Crossref]

A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
[Crossref]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[Crossref] [PubMed]

Allison, S. W.

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

Beshears, D. L.

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

Beyrau, F.

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
[Crossref]

A. O. Ojo, B. Fond, B. G. M. Van Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser Doppler velocimetry,” Opt. Lett. 40(20), 4759–4762 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Böhm, B.

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

Brübach, J.

N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
[Crossref]

Cates, M. R.

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

Chen, L.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

Dreizler, A.

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
[Crossref]

Fond, B.

A. O. Ojo, B. Fond, B. G. M. Van Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser Doppler velocimetry,” Opt. Lett. 40(20), 4759–4762 (2015).
[Crossref] [PubMed]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Fuhrmann, N.

N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
[Crossref]

Gilles, G. T.

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

Grinberg, M.

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Heyes, A. L.

Jordan, J.

N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
[Crossref]

Juhlin, G.

Kempf, A. M.

Keyhani, M.

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption,” J Sol. Energ. 123(1), 30–42 (2001).
[Crossref]

Lee, H.

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

Lin, C.-C.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

Linne, M. A.

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

Liu, R.-S.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

Meltzer, R. S.

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Miller, W. A.

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption,” J Sol. Energ. 123(1), 30–42 (2001).
[Crossref]

Neal, N. J.

N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
[Crossref]

Ojo, A. O.

Omrane, A.

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
[Crossref]

A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43(17), 3523–3529 (2004).
[Crossref] [PubMed]

Ossler, F.

Paranthaman, M.

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

Petersson, P.

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

Richter, M.

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
[Crossref]

Rothamer, D.

N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
[Crossref]

Sadiki, A.

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

Särner, G.

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
[Crossref]

A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
[Crossref]

Spencer, R. D.

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158(1), 361–376 (1969).
[Crossref] [PubMed]

Turos-Matysiak, R.

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Van Wachem, B. G. M.

Wang, J. W.

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Weber, G.

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158(1), 361–376 (1969).
[Crossref] [PubMed]

Yeh, C.-W.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

Yen, W. M.

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

R. D. Spencer and G. Weber, “Measurements of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer,” Ann. N. Y. Acad. Sci. 158(1), 361–376 (1969).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (5)

A. Omrane, G. Särner, and M. Aldén, “2D-temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B 79(4), 431–434 (2004).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B 121(4), 495–505 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

H. Lee, B. Böhm, A. Sadiki, and A. Dreizler, “Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry,” Appl. Phys. B 122(7), 1–13 (2016).
[Crossref]

A. Omrane, P. Petersson, M. Alden, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008).
[Crossref]

J Sol. Energ. (1)

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption,” J Sol. Energ. 123(1), 30–42 (2001).
[Crossref]

J. Lumin. (1)

R. Turos-Matysiak, M. Grinberg, J. W. Wang, W. M. Yen, and R. S. Meltzer, “Luminescence of BAM under high pressure: the Eu2+ sites,” J. Lumin. 122-123, 107–109 (2007).
[Crossref]

Materials (Basel) (1)

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials (Basel) 3(3), 2172–2195 (2010).
[Crossref]

Meas. Sci. Technol. (1)

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19(12), 125304 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Inst. (1)

N. Fuhrmann, J. Brübach, and A. Dreizler, “Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst. 34(2), 3611–3618 (2013).
[Crossref]

Proc. SPIE (1)

S. W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, “LED-induced fluorescence diagnostics for turbine and combustion engine thermometry,” Proc. SPIE 4448, 28–35 (2001).
[Crossref]

SAE Int. J. Engines (1)

N. J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6(1), 300–318 (2013).
[Crossref]

Other (3)

Á. Yáñez-González, “Phosphorescent thermal history sensors for extreme environments,” PhD thesis, (Mech. Eng, Imperial College London, 2015).

C. Abram, B. Fond, and F. Beyrau, “Simultaneous temperature and velocity measurements in fluid flows using thermographic phosphor tracer particles: A review,” Prog. Energ. Combust, in revision.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Luminescence and Mie scattering signals from three different excitation waveform schemes (a) 0.5 MHz sine wave, (b) 0.5 MHz square wave, and (c) 0.5 MHz half sine wave recorded from a stack of aggregated BAM:Eu2+ phosphor powder. The luminescence signal is collected using a bandpass filter 447-60nm.
Fig. 2
Fig. 2 Experimental setup for simultaneous flow temperature and velocity measurements. LPF1: 500 nm, LPF2: 400 nm, 50:50BS: plate beam splitter, BP1: 514-10 nm, BP2: 375-10 nm, BP3: 447-60 nm, FS1, 2, and 3: focal length = 50 mm.
Fig. 3
Fig. 3 Signals from a BAM:Eu2+ particle normalised to the maximum intensity based on using half sine-wave (HSW) excitation modulation waveform at frequency 1MHz: At flow condition 293 K, 2.1 m/s; (a) 20 µs time window of Doppler burst (514.5 nm), (b) 20 µs time window of phase-shifted luminescence (447nm) burst relative to the Mie scattering (375nm) burst, and (c) 6 µs time window of phase-shifted luminescence (447nm) burst relative to the Mie scattering (375nm) burst. At flow condition 840 K, 6.2 m/s; (d) 20 µs time window of Doppler burst (514.5 nm), (e) 20 µs time window of phase-shifted luminescence (447nm) burst relative to the Mie scattering (375nm) burst, and (f) 6 µs time window of phase-shifted luminescence (447nm) burst relative to the Mie scattering (375nm) burst. The wavelengths are written in terms of the central wavelengths of the spectral filter used. A moving average filter of 4 sample points is applied to the 447nm signals in (b) and (c) for better visualisation.
Fig. 4
Fig. 4 Phase shift as a function of flow temperature. The error bars represent the standard deviation of 100 measurements of single particles.
Fig. 5
Fig. 5 Dependence of luminescence lifetime on modulation frequency using Eq. (1) and phase shift data for the HSW.

Tables (1)

Tables Icon

Table 1 Average and standard deviation of the measured phase shift for three excitation waveform, square wave (SqW), half sine wave (HSW) and full sine wave (FSW). The second row for each flow temperature corresponds to a repeated measurement set.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tan(ΔΦ)=2π f M τ
I= I 0 exp(t/τ)
1 ΔΦ dΔΦ dT = 1 tan 1 (2π f M τ) 2π f M τ 1+ (2π f M τ) 2 × 1 τ dτ dT

Metrics