Abstract

We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10−4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing

Yun Liu, Shimeng Chen, Qiang Liu, Jean-François Masson, and Wei Peng
Opt. Express 23(16) 20540-20548 (2015)

Micro-capillary-based self-referencing surface plasmon resonance biosensor for determination of transferrin

Shimeng Chen, Yun Liu, Zigeng Liu, Shuwen Chu, and Wei Peng
Appl. Opt. 55(30) 8571-8575 (2016)

Compact surface plasmon resonance imaging sensing system based on general optoelectronic components

Wei Peng, Yun Liu, Peng Fang, Xiuxin Liu, Zhenfeng Gong, Hanqi Wang, and Fang Cheng
Opt. Express 22(5) 6174-6185 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
    [Crossref]
  2. H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron. 22(5), 644–648 (2006).
    [Crossref] [PubMed]
  3. K. V. Gobi and N. Miura, “Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor,” Sens. Actuators B Chem. 103(1), 265–271 (2004).
    [Crossref]
  4. J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
    [Crossref] [PubMed]
  5. T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
    [Crossref] [PubMed]
  6. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
    [Crossref]
  7. T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
    [Crossref]
  8. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
    [Crossref]
  9. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
    [Crossref] [PubMed]
  10. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43(6), 1216–1220 (2004).
    [Crossref] [PubMed]
  11. Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
    [Crossref]
  12. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  13. E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver, “Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment,” Opt. Express 18(24), 24412–24422 (2010).
    [Crossref] [PubMed]
  14. L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
    [Crossref]
  15. G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
    [Crossref]
  16. C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
    [Crossref]
  17. L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
    [Crossref] [PubMed]
  18. J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, and K. S. Lee, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Opt. Express 20(19), 21729–21738 (2012).
    [Crossref] [PubMed]
  19. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep. 5(1), 12864 (2015).
    [Crossref] [PubMed]
  20. W. Peng, Y. Liu, P. Fang, X. Liu, Z. Gong, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 22(5), 6174–6185 (2014).
    [Crossref] [PubMed]
  21. Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
    [Crossref] [PubMed]
  22. I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
    [Crossref] [PubMed]

2015 (2)

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep. 5(1), 12864 (2015).
[Crossref] [PubMed]

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (1)

2010 (2)

2009 (2)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

2008 (1)

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

2007 (3)

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[Crossref]

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

2006 (1)

H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron. 22(5), 644–648 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43(6), 1216–1220 (2004).
[Crossref] [PubMed]

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

K. V. Gobi and N. Miura, “Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor,” Sens. Actuators B Chem. 103(1), 265–271 (2004).
[Crossref]

2000 (1)

I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
[Crossref] [PubMed]

1999 (1)

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

1998 (2)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

1996 (1)

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
[Crossref]

Ahn, J. H.

Akowuah, E. K.

Albert, J.

Anderson, M. E.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Banerji, S.

Berger, C. H.

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Beumer, T. A. M.

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Booksh, K. S.

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Chen, H. L.

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

Chen, S.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep. 5(1), 12864 (2015).
[Crossref] [PubMed]

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[Crossref] [PubMed]

Chen, Y.

H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron. 22(5), 644–648 (2006).
[Crossref] [PubMed]

Cheng, F.

Chinowsky, T. M.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Clendenning, J. B.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

Cornelius, E. M.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Edwards, T.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Fang, P.

Fu, E.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Furlong, C. E.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

Gao, Y.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Georgiadis, R. M.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Gobi, K. V.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[Crossref]

K. V. Gobi and N. Miura, “Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor,” Sens. Actuators B Chem. 103(1), 265–271 (2004).
[Crossref]

Golden, M. S.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Gong, Z.

Gorman, T.

Greve, J.

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Grow, M. S.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Haxha, S.

Homola, J.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Huang, H.

H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron. 22(5), 644–648 (2006).
[Crossref] [PubMed]

Johnston, K. S.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
[Crossref]

Kim, I.

Kim, W. M.

Kim, Y. C.

Kooyman, R. P. H.

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Lee, K. S.

Lee, T. S.

Liu, F.

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

Liu, Q.

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[Crossref] [PubMed]

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep. 5(1), 12864 (2015).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

Luna-Moreno, D.

Mandler, D.

I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
[Crossref] [PubMed]

Masson, J. F.

Matsue, T.

I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
[Crossref] [PubMed]

Miura, N.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[Crossref]

K. V. Gobi and N. Miura, “Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor,” Sens. Actuators B Chem. 103(1), 265–271 (2004).
[Crossref]

Monzón-Hernández, D.

Nelson, K.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
[Crossref]

Nenninger, G. G.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

Obando, L. L.

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Oliver, J. V.

Peng, W.

Piliarik, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Postelnicu, L.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Ruemmele, J. A.

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

Seong, T. Y.

Shankaran, D. R.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[Crossref]

Shao, L. Y.

Shevchenko, Y.

Sun, F.

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Talavera, D.

Tichý, I.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Tu, C. W.

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

Turyan, I.

I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
[Crossref] [PubMed]

Vala, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Villatoro, J.

Wang, H.

Wang, T. J.

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

Wu, Y.

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Xiao, G.

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Yager, P.

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

Yee, S. S.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
[Crossref]

Zhang, Z.

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Anal. Chem. (4)

J. A. Ruemmele, M. S. Golden, Y. Gao, E. M. Cornelius, M. E. Anderson, L. Postelnicu, and R. M. Georgiadis, “Quantitative surface plasmon resonance imaging: a simple approach to automated angle scanning,” Anal. Chem. 80(12), 4752–4756 (2008).
[Crossref] [PubMed]

L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

C. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

I. Turyan, T. Matsue, and D. Mandler, “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 72(15), 3431–3435 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (3)

T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007).
[Crossref] [PubMed]

H. Huang and Y. Chen, “Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging,” Biosens. Bioelectron. 22(5), 644–648 (2006).
[Crossref] [PubMed]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (2)

T. J. Wang, C. W. Tu, F. Liu, and H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[Crossref]

Z. Zhang, P. Zhao, F. Sun, G. Xiao, and Y. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photonics Technol. Lett. 19(24), 1958–1960 (2007).
[Crossref]

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface plasmon resonance biosensor based on smart phone platforms,” Sci. Rep. 5(1), 12864 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (4)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1), 38–45 (1998).
[Crossref]

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[Crossref]

K. V. Gobi and N. Miura, “Highly sensitive and interference-free simultaneous detection of two polycyclic aromatic hydrocarbons at parts-per-trillion levels using a surface plasmon resonance immunosensor,” Sens. Actuators B Chem. 103(1), 265–271 (2004).
[Crossref]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1), 187–191 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the capillary SPR device.

Fig. 2
Fig. 2

Principle of the SPR biosensing device. (a) Schematic diagram of the capillary SPR sensing systems based on wavelength modulation. (b)Transmission spectra of the capillary based SPR sensing element with different RIs. (c) The absorbance of the capillary based SPR sensing element with different RIs.

Fig. 3
Fig. 3

Optical characters of the capillary based SPR sensing element. (a) Schematic of the capillary. (b) Optical field distribution of the capillary based SPR sensing element.

Fig. 4
Fig. 4

Design of the self-reference SPR biosensing device.

Fig. 5
Fig. 5

The schematic diagram of the antibody immobilization protocol on the surface of capillary based SPR sensing element. (a) Processing steps of capillary based SPR sensing element. (b) Antibody immobilization protocol on the surface of capillary SPR sensing area. (c) Response of the capillary SPR sensor for surface modification process and specific binding process.

Fig. 6
Fig. 6

Processing flow of the image.

Fig. 7
Fig. 7

Responses of measurement channel and reference channel to external factors. (a) Real time response with bulk RI fluctuation. (b) Real time response with temperature fluctuation. (c) Real time response with light intensity fluctuation.

Fig. 8
Fig. 8

The responses of measurement channel and reference channel to Con A sample with concentrations of (a) 0.5 mg/mL, (b) 1 mg/mL, (c) 1.5 mg/mL and (d) 2.0 mg/mL.

Fig. 9
Fig. 9

Final response of the biosensing device. (a) The final responses of the measurement channel (MC), reference channel (RC) and their difference value (MC-RC). (b) The final responses of the measurement channel, reference channel and (c) their difference value (MC-RC) as functions of concentration of Con A sample (0. 5–2.0 mg/mL).

Metrics