Abstract

For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10−3, the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications

Jurong Bai, Yong Li, Yang Yi, Wei Cheng, and Huimin Du
Opt. Express 25(20) 24630-24638 (2017)

BICM-ID scheme for clipped DCO-OFDM in visible light communications

Jiandong Tan, Zhaocheng Wang, Qi Wang, and Linglong Dai
Opt. Express 24(5) 4573-4581 (2016)

PAPR analysis for OFDM visible light communication

Jiaheng Wang, Yang Xu, Xintong Ling, Rong Zhang, Zhi Ding, and Chunming Zhao
Opt. Express 24(24) 27457-27474 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  3. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  4. R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3(8), 620–628 (2011).
    [Crossref]
  5. J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
    [Crossref]
  6. K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
    [Crossref]
  7. L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  8. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  9. S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  10. E. Monteiro and S. Hranilovic, “Design and implementation of color-shift keying for visible light communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
    [Crossref]
  11. S. Pergoloni, M. Biagi, S. Rinauro, S. Colonnese, R. Cusani, and G. Scarano, “Merging color shift keying and complementary pulse position modulation for visible light illumination and communication,” J. Lightwave Technol. 33(1), 192–200 (2015).
    [Crossref]
  12. H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
    [Crossref]
  13. H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
    [Crossref]
  14. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with Matlab (Taylor and Francis, 2012).
  15. A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  16. M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.
  17. Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
    [Crossref] [PubMed]
  18. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).
  19. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
    [Crossref]
  20. H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
    [Crossref]
  21. W. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE Conference on Communication Workshop (IEEE, 2015), pp. 1322−1326.
    [Crossref]
  22. C. Wu, H. Zhang, and W. Xu, “On visible light communication using LED array with DFT-spread OFDM,” in Proceedings of IEEE Conference on Communication (IEEE, 2014), pp. 3325−3330.
    [Crossref]
  23. J. Wang, Y. Xu, X. Ling, R. Zhang, Z. Ding, and C. Zhao, “PAPR analysis for OFDM visible light communication,” Opt. Express 24(24), 27457–27474 (2016).
    [Crossref] [PubMed]
  24. K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
    [Crossref]
  25. A. Le and K. Araki, “A group of modulation schemes for adaptive modulation,” in Proceedings of IEEE Conference on Communication Systems (IEEE, 2008), pp. 864−869.
  26. F. Kayhan and G. Montorsi, “Constellation design for channels affected by phase noise,” in Proceedings of IEEE Conference on Communication (IEEE, 2013), pp. 3154−3158.
    [Crossref]
  27. J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
    [Crossref]
  28. F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun. 51(10), 1638–1642 (2003).
    [Crossref]
  29. A. Oppenheim and A. Willsky, Signals and Systems (Prentice Hall, 1996).
  30. A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976).
    [Crossref]
  31. R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
    [Crossref]
  32. L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett. 4(3), 86–88 (2000).
    [Crossref]
  33. R. Lyons, Understanding Digital Signal Processing, (Prentice Hall, 2004).
  34. Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.
  35. Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
    [Crossref]
  36. S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 1536–1584 (2005).
  37. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]

2016 (3)

2015 (1)

2014 (3)

E. Monteiro and S. Hranilovic, “Design and implementation of color-shift keying for visible light communications,” J. Lightwave Technol. 32(10), 2053–2060 (2014).
[Crossref]

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

2013 (2)

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
[Crossref]

2012 (1)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

2011 (3)

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3(8), 620–628 (2011).
[Crossref]

2010 (2)

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2009 (4)

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (1)

J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

2005 (1)

S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 1536–1584 (2005).

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2003 (1)

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun. 51(10), 1638–1642 (2003).
[Crossref]

2002 (1)

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

2000 (1)

L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett. 4(3), 86–88 (2000).
[Crossref]

1996 (1)

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

1976 (1)

A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976).
[Crossref]

Afgani, M. Z.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.

Araki, K.

A. Le and K. Araki, “A group of modulation schemes for adaptive modulation,” in Proceedings of IEEE Conference on Communication Systems (IEEE, 2008), pp. 864−869.

Armstrong, J.

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

Azhar, A. H.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Bauml, R. W.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Baxley, R. J.

Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.

Biagi, M.

Campos-Delgado, D. U.

J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
[Crossref]

Chandrasekhar, S.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Chen, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, L. K.

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
[Crossref] [PubMed]

Chen, X.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Cho, K.

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Cimini, L. J.

L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett. 4(3), 86–88 (2000).
[Crossref]

Colonnese, S.

Cusani, R.

Ding, Z.

Elgala, H.

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3(8), 620–628 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
[Crossref]

Essiambre, R. J.

Faulkner, G.

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Fischer, R. F. H.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Foschini, G. J.

Ghassemlooy, Z.

W. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE Conference on Communication Workshop (IEEE, 2015), pp. 1322−1326.
[Crossref]

Goebel, B.

Gonzalez-Perez, M. G.

J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3(8), 620–628 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
[Crossref]

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.

Han, S.

S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 1536–1584 (2005).

Hong, Y.

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
[Crossref] [PubMed]

Hranilovic, S.

Huang, B.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Huber, J. B.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

Ishihara, K.

Kayhan, F.

F. Kayhan and G. Montorsi, “Constellation design for channels affected by phase noise,” in Proceedings of IEEE Conference on Communication (IEEE, 2013), pp. 3154−3158.
[Crossref]

Knipp, D.

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.

Kobayashi, T.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kramer, G.

Kudo, R.

Le, A.

A. Le and K. Araki, “A group of modulation schemes for adaptive modulation,” in Proceedings of IEEE Conference on Communication Systems (IEEE, 2008), pp. 864−869.

Lee, J.

S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 1536–1584 (2005).

Lee, K.

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

Li, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Lim, S. K.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Ling, X.

Lingle, R.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Liu, X.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Luna-Rivera, J. M.

J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
[Crossref]

Masuda, H.

Mesleh, R.

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3(8), 620–628 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
[Crossref]

Minh, L. H.

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Miyamoto, Y.

Monteiro, E.

Montorsi, G.

F. Kayhan and G. Montorsi, “Constellation design for channels affected by phase noise,” in Proceedings of IEEE Conference on Communication (IEEE, 2013), pp. 3154−3158.
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

O’Brien, D.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Park, H.

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

Peckham, D. W.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Pergoloni, S.

Popoola, W.

W. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE Conference on Communication Workshop (IEEE, 2015), pp. 1322−1326.
[Crossref]

Pricope, B.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
[Crossref]

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Rinauro, S.

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Sano, A.

Scarano, G.

Schmidt, B. J. C.

J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

Sollenberger, N. R.

L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett. 4(3), 86–88 (2000).
[Crossref]

Stewart, B. G.

W. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE Conference on Communication Workshop (IEEE, 2015), pp. 1322−1326.
[Crossref]

Takatori, Y.

Tang, D.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Tran, T. A.

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Wang, J.

Winzer, P. J.

Wu, C.

C. Wu, H. Zhang, and W. Xu, “On visible light communication using LED array with DFT-spread OFDM,” in Proceedings of IEEE Conference on Communication (IEEE, 2014), pp. 3325−3330.
[Crossref]

Wu, T.

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Wyner, A. D.

A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976).
[Crossref]

Xiong, F.

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun. 51(10), 1638–1642 (2003).
[Crossref]

Xu, W.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

C. Wu, H. Zhang, and W. Xu, “On visible light communication using LED array with DFT-spread OFDM,” in Proceedings of IEEE Conference on Communication (IEEE, 2014), pp. 3325−3330.
[Crossref]

Xu, Y.

Yamada, E.

Yamazaki, E.

Ying, K.

Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.

Yoon, D.

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Yoshida, E.

Yu, Z.

Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.

Yuan, Y.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

Zeng, L.

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zhang, H.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

C. Wu, H. Zhang, and W. Xu, “On visible light communication using LED array with DFT-spread OFDM,” in Proceedings of IEEE Conference on Communication (IEEE, 2014), pp. 3325−3330.
[Crossref]

Zhang, R.

Zhao, C.

Zhou, G. T.

Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.

Zhu, B.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Ziv, J.

A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976).
[Crossref]

Electron. Lett. (1)

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett. 32(22), 2056–2057 (1996).
[Crossref]

IEEE Commun. Lett. (2)

L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett. 4(3), 86–88 (2000).
[Crossref]

J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett. 12(5), 343–345 (2008).
[Crossref]

IEEE Commun. Mag. (2)

S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (7)

A. H. Azhar, T. A. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photonics Technol. Lett. 26(17), 1718–1721 (2014).
[Crossref]

K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photonics Technol. Lett. 23(16), 1136–1138 (2011).
[Crossref]

L. H. Minh, D. O’Brien, G. Faulkner, and L. Zeng, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photonics Technol. Lett. 21(11), 826–828 (2010).

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

IEEE Trans. Commun. (2)

F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun. 51(10), 1638–1642 (2003).
[Crossref]

K. Cho and D. Yoon, “On the general BER expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inf. Theory 22(1), 1–10 (1976).
[Crossref]

IEEE Wirel. Commun. (1)

S. Han and J. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun. 12(2), 1536–1584 (2005).

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Opt. Lett. (1)

Procedia Technology (1)

J. M. Luna-Rivera, D. U. Campos-Delgado, and M. G. Gonzalez-Perez, “Constellation design for spatial modulation,” Procedia Technology 7(4), 71–78 (2013).
[Crossref]

Other (10)

A. Oppenheim and A. Willsky, Signals and Systems (Prentice Hall, 1996).

R. Lyons, Understanding Digital Signal Processing, (Prentice Hall, 2004).

Z. Yu, K. Ying, R. J. Baxley, and G. T. Zhou, “PAPR reduction for bit-loaded OFDM in visible light communications,” in Proceedings of IEEE Wireless Communications & Networking Conference (IEEE, 2015), pp. 334−339.

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2007), pp. 2185−2189.
[Crossref]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with Matlab (Taylor and Francis, 2012).

M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, “Visible light communication using OFDM,” in Proceedings of IEEE Conference on Testbeds & Research Infrastructures for the Development of Networks & Communities (IEEE, 2006), pp. 129−134.

A. Le and K. Araki, “A group of modulation schemes for adaptive modulation,” in Proceedings of IEEE Conference on Communication Systems (IEEE, 2008), pp. 864−869.

F. Kayhan and G. Montorsi, “Constellation design for channels affected by phase noise,” in Proceedings of IEEE Conference on Communication (IEEE, 2013), pp. 3154−3158.
[Crossref]

W. Popoola, Z. Ghassemlooy, and B. G. Stewart, “Optimising OFDM based visible light communication for high throughput and reduced PAPR,” in Proceedings of IEEE Conference on Communication Workshop (IEEE, 2015), pp. 1322−1326.
[Crossref]

C. Wu, H. Zhang, and W. Xu, “On visible light communication using LED array with DFT-spread OFDM,” in Proceedings of IEEE Conference on Communication (IEEE, 2014), pp. 3325−3330.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the ISC of OFDM symbols.
Fig. 2
Fig. 2 Block diagram of the DCO-OFDM systems with the TDR scheme.
Fig. 3
Fig. 3 Block diagram of the ACO-OFDM systems with the TDR scheme.
Fig. 4
Fig. 4 Schematic diagrams of TDR for DCO- and ACO-OFDM symbols, respectively.
Fig. 5
Fig. 5 Unified design of the TDR schemes for both DCO- and ACO-OFDM systems.
Fig. 6
Fig. 6 Distributions of the top 5% high peaks for OFDM signals in the time domain w/o reshuffling: (a) DCO-OFDM with BPSK; (b) DCO-OFDM with rectangle 8-QAM; (c) ACO-OFDM with BPSK; and (d) ACO-OFDM with rectangle 8-QAM.
Fig. 7
Fig. 7 Distributions of the top 5% high peaks for OFDM signals in the time domain w/ reshuffling: (a)~(d) are consistent with Fig. 6; (e) DCO-OFDM with BPSK and w/ the TDR scheme in Fig. 2; (f) DCO-OFDM with rectangle 8-QAM and w/ the TDR scheme in Fig. 2.
Fig. 8
Fig. 8 CCDFs of the PAPR for: (a) DCO- and (b) ACO-OFDM with BPSK.
Fig. 9
Fig. 9 Schematic diagram of ISC accounting for 1/64, 1/32, 3/64 and 1/16, respectively, of the OFDM symbol length under the partial non-ideal transmission conditions.
Fig. 10
Fig. 10 BER performance comparison for: (a) DCO-OFDM with BPSK; (b) ACO-OFDM with BPSK; (c) DCO-OFDM with rectangle 8-QAM; and (d) ACO-OFDM with rectangle 8-QAM. The solid and hollow plots represent the BER curves w/ and w/o the TDR scheme in Fig. 5, respectively.
Fig. 11
Fig. 11 BER performance comparison for: (a) DCO-OFDM with BPSK and (b) DCO-OFDM with rectangle 8-QAM. The olive and purple plots represent the BER curves w/ the TDR scheme in Fig. 2 and Fig. 5, respectively.
Fig. 12
Fig. 12 Constellation diagrams of: (a) DCO-OFDM with BPSK and w/o TDR; (b) DCO-OFDM with BPSK and w/ the TDR scheme in Fig. 2; (c) DCO-OFDM with rectangle 8-QAM and w/o TDR; and (d) DCO-OFDM with rectangle 8-QAM and w/ the TDR scheme in Fig. 2.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

s(n)=( 1/ N c ) k=0 N c 1 S(k) e j2πnk N c ,n=0,1, N c 1,
{S(k)} k=0 2N1 =[0 { X k } k=1 N1 0 { X k * } k=N1 1 ],
s(n)=( 2/N ) k=1 N1 [ a k cos(πnk/N) b k sin(πnk/N) ],n=0,1,2N1,
Var[s(n)]=(1/N) k=1 N1 { [Var( a k )Var( b k )]cos(2πnk/N)+Var( a k )+Var( b k ) } .
f(t)= 1 2π S(ω) e jωt d ω.
f(m)= 1 2π π π S( e jω ) e jωt d ω.
f(m)= 1 2N l=N N1 S(l) e jπml N ,m=N,N+1,N1.
{S(l)} l=N N1 =[0 { Y l } l=N+1 1 0 { Y l * } l=1 N+1 ].
f(m)= 1 2N [ l=N+1 1 Y l e jπml N + l=1 N1 Y l * e jπml N ],m=N,N+1,N1.
f(n)= 1 2N (1) n [ k=1 N1 (1) k X k e jπnk N + k=N+1 2N1 (1) k X 2Nk * e jπnk N ),n=0,1,2N1 ].
f(n)=( 1/2N ) k=0 2N1 (1) k S(k) e jπnk N ,n=0,1,2N1.
f(n)={ s(n+N),0n<N, s(nN),Nn<2N.
| k=0 2N1 S(k) |>| k=0 2N1 (1) k S(k) |.
{S(k)} k=0 4N1 =[0 X 0 0 X 1 ...0 X N1 0 X N1 * 0... X 1 * 0 X 0 * ].
f(m)= 1 4N l=2N 2N1 S(l) e jπml 2N ,m=2N,2N+1,2N1.
{S(l)} l=2N 2N1 =[0 Y N 0 Y N+1 ...0 Y 1 0 Y 1 * 0... Y N+1 * 0 Y N * ].
f(m)= 1 4N [ l=N 1 Y l e jπm(2l+1) 2N + l=0 N1 Y l1 * e jπm(2l+1) 2N ],m=N,N+1,N1.
f(n)= 1 4N (1) n [ k=0 N1 (j) 2k+1 X k e jπn(2k+1) 2N + k=N 2N1 (j) 2k+1 X 2Nk * e jπn(2k+1) 2N ) ],n=0,1,2N1.
f(n)= 1 4N (1) n [ k=1 koddnumber 2N1 (j) k X k1 2 e jπnk 2N + k=0 kevennumber 2N2 (j) k 0 e jπnk 2N + k=2N+1 koddnumber 4N1 (j) k X 4N1k 2 * e jπnk 2N + k=2N kevennumber 4N2 (j) k 0 e jπnk 2N ],n=0,1,4N1.
f(n)=( 1/4N ) k=0 4N1 (j) k S(k) e jπnk 2N ,n=0,1,4N1.
f(n)={ s(n+N),0n<3N, s(n3N),3Nn<4N.
s(n+Δn)=IDFT[ S(k) e j2πΔnk N c ],
f(n)=( 1/ N c ) k=0 N c 1 e j2πΔnk N c S(k) e j2πnk N c ,n=0,1, N c 1.
f(n)={ s(n+ N c Δn),0n<Δn, s(nΔn),Δnn< N c .

Metrics