Abstract

A 16 Gb/s four-level pulse amplitude modulation (PAM4) underwater wireless optical communication (UWOC) system based on 488-nm laser diode (LD) with light injection and optoelectronic feedback techniques is proposed and successfully demonstrated. Experimental results show that such a 1.8-GHz 488-nm blue light LD with light injection and optoelectronic feedback techniques is enough forceful for a 16 Gb/s PAM4 signal underwater link. To the authors’ knowledge, this study is the first to successfully adopt a 488-nm LD transmitter with light injection and optoelectronic feedback techniques in a PAM4 UWOC system. By adopting a 488-nm LD transmitter with light injection and optoelectronic feedback techniques, good bit error rate performance (offline processed by Matlab) and clear eye diagrams (measured in real-time) are achieved over a 10-m underwater link. The proposed system has the potential to play a vital role in the future UWOC infrastructure by effectively providing high transmission rate (16 Gb/s) and long underwater transmission distance (10 m).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
64 Gb/s PAM4 VCSEL-based FSO link

Hai-Han Lu, Chung-Yi Li, Chun-Ming Ho, Ming-Te Cheng, Xin-Yao Lin, Zih-Yi Yang, and Hwan-Wei Chen
Opt. Express 25(5) 5749-5757 (2017)

45  Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques

Hai-Han Lu, Chung-Yi Li, Hwan-Wei Chen, Zih-Yi Yang, Xin-Yao Lin, Ming-Te Cheng, Chang-Kai Lu, and Tien-Tsorng Shih
Opt. Lett. 41(21) 5023-5026 (2016)

10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication

Meiwei Kong, Weichao Lv, Tariq Ali, Rohail Sarwar, Chuying Yu, Yang Qiu, Fengzhong Qu, Zhiwei Xu, Jun Han, and Jing Xu
Opt. Express 25(17) 20829-20834 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
    [Crossref]
  2. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  3. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  4. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  5. W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
    [Crossref] [PubMed]
  6. C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  7. S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53(2), 214–233 (1963).
    [Crossref]
  8. H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).
  9. H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
    [Crossref] [PubMed]
  10. H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).
  11. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
    [Crossref]
  12. J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in IEEE Military Commun. Conf. (MILCOM) (2005), 1700–1705.
    [Crossref]
  13. C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.
  14. P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
    [Crossref]
  15. S. U. H. Qureshi, “Adaptive equalization,” IEEE Proc. 73(9), 1349–1387 (1985).
    [Crossref]

2017 (2)

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

2016 (3)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

2013 (1)

1997 (1)

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
[Crossref]

1963 (1)

Alouini, M. S.

Bankman, I. N.

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in IEEE Military Commun. Conf. (MILCOM) (2005), 1700–1705.
[Crossref]

Bourennane, S.

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Chen, B. R.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Chen, H. W.

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

Cheng, M. T.

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

Chi, Y. C.

Chu, C. A.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Cox, W.

Duntley, S. Q.

Duran, J. R.

Foing, J. P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
[Crossref]

Gabriel, C.

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Giles, J. W.

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in IEEE Military Commun. Conf. (MILCOM) (2005), 1700–1705.
[Crossref]

Hanawa, M.

He, J. H.

Ho, C. M.

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Huang, S. J.

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

Janjua, B.

Khalighi, M.

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Kuo, H. C.

Leon, P.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Léon, P.

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

Li, C. Y.

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Li, H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Lin, G. R.

Lin, H. H.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Lin, X. Y.

Lu, C. K.

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

Lu, H. H.

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Luo, M.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Mizukoshi, I.

Muth, J.

Nakamura, K.

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Park, K. H.

Rigaud, V.

C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Saboureau, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
[Crossref]

Schanne, P.

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
[Crossref]

Shih, T. T.

Tsai, C. T.

Tsai, W. S.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Wang, H. Y.

Wu, C. J.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Yang, Q.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Yang, Z. Y.

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. K. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Opt. Lett. 41(21), 5023–5026 (2016).
[Crossref] [PubMed]

Yu, S.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback,” IEEE J. Quantum Electron. 33(9), 1582–1591 (1997).
[Crossref]

IEEE Photonics J. (4)

H. H. Lu, C. Y. Li, H. W. Chen, C. M. Ho, M. T. Cheng, Z. Y. Yang, and C. K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics J. 9(1), 7900208 (2017).

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
[Crossref]

H. H. Lu, C. Y. Li, C. K. Lu, C. M. Ho, H. W. Chen, M. T. Cheng, Z. Y. Yang, and S. J. Huang, “A 103.12 Gb/s WDM PAM4 VCSEL-based transmission with light injection and optoelectronic feedback techniques,” IEEE Photonics J. 9(1), 7900808 (2017).

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (1)

Other (3)

S. U. H. Qureshi, “Adaptive equalization,” IEEE Proc. 73(9), 1349–1387 (1985).
[Crossref]

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in IEEE Military Commun. Conf. (MILCOM) (2005), 1700–1705.
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in IEEE Global Commun. Conf. (GLOBECOM) (2011), 833–837.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The experimental configuration of the proposed 16 Gb/s PAM4 UWOC system based on 488 nm LD with light injection and optoelectronic feedback techniques.
Fig. 2
Fig. 2 (a) The output optical power of blue light LD under different operation currents. (b) The measured optical spectra at 25 °C at different operation currents.
Fig. 3
Fig. 3 The optical spectra of LD2 under the scenarios of free-running as well as light injection and optoelectronic feedback.
Fig. 4
Fig. 4 The frequency response of the LD-based PAM4 UWOC system under scenarios of free-running as well as light injection and optoelectronic feedback.
Fig. 5
Fig. 5 The block diagram of the DFE.
Fig. 6
Fig. 6 The BER curves of the 16 Gb/s PAM4 LD-based UWOC system over different underwater links.
Fig. 7
Fig. 7 The eye diagrams of the 16 Gb/s PAM4 signal over a (a) 5-m, (b) 10-m, (c) 15-m, and (d) 20-m underwater link.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 e [a(λ)+s(λ)]z
I= I 0 e a(λ)z
f 0 2 = g 0 P 4 π 2 τ P
y= n=0 N1 c n x( t 0 +kT nT)
e=y d
c n (k+1)= c n (k) uex( t 0 +kT nT)
b n (k+1)= b n (k)+ued( t 0 +kT nT)

Metrics