Abstract

We introduce the Holographic – Single Scatterer Localization Microscopy in which we combine dynamical laser speckle illumination with centroid localization of backscattered light spots in order to localize isolated scattering particles. The reconstructed centroid images show very accurate particle localization, with precision much better than the width of diffraction-limited image of the particles recorded by the CCD. Furthermore, the method provides an improved resolution in distinguishing two very close scattering objects compared to the standard laser scanning techniques and can be assimilated to a confocal technique in the ability of light background rejection in three-dimensional disposition of scattering objects. The illumination is controlled via a digital holography setup based on the use of a spatial light modulator. This allows not only a high level of versatility in the illumination patterns, but also the remarkable characteristics of absence of moving mechanical parts, typical of the laser scanning techniques, and the possibility of strongly miniaturizing the setup.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator

He Ni, Limin Zou, Qingyuan Guo, and Xuemei Ding
Opt. Express 25(3) 2872-2882 (2017)

Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples

Peter W. Winter, Andrew G. York, Damian Dalle Nogare, Maria Ingaramo, Ryan Christensen, Ajay Chitnis, George H. Patterson, and Hari Shroff
Optica 1(3) 181-191 (2014)

Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging

Ginni Grover, Sean Quirin, Callie Fiedler, and Rafael Piestun
Biomed. Opt. Express 2(11) 3010-3020 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
    [Crossref] [PubMed]
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  3. A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
    [Crossref]
  4. A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
    [Crossref]
  5. A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
    [Crossref]
  6. A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
    [Crossref]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  9. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  10. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  11. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  12. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
    [Crossref]
  13. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
    [Crossref]
  14. J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
    [Crossref] [PubMed]
  15. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  16. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  17. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  18. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
    [Crossref] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1997).
  20. N. Bobroff, “Position measurement with a resolution and noise‐limited instrument,” Rev. Sci. Instrum. 57(6), 1152–1157 (1986).
    [Crossref]
  21. M. Song, A. Karatutlu, I. Ali, O. Ersoy, Y. Zhou, Y. Yang, Y. Zhang, W. R. Little, A. P. Wheeler, and A. V. Sapelkin, “Spectroscopic super-resolution fluorescence cell imaging using ultra-small Ge quantum dots,” Opt. Express 25(4), 4240–4253 (2017).
    [Crossref] [PubMed]
  22. S. W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Mol. Biotechnol. 16(2), 127–149 (2000).
    [Crossref] [PubMed]
  23. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
    [Crossref]
  24. J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
    [Crossref] [PubMed]
  25. J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal Multi-Photon Microscopy,” in Handbook Of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer US, 2006), pp. 550–560.
  26. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  27. A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
    [Crossref]
  28. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
    [Crossref] [PubMed]
  29. R. Heintzmann, “Super-resolution imaging: Beyond the realm of fluorescence,” Nat. Photonics 7(6), 426–428 (2013).
    [Crossref]
  30. O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
    [Crossref] [PubMed]
  31. E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
    [Crossref]
  32. S. Chowdhury, A.-H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3(8), 1841–1854 (2012).
    [Crossref] [PubMed]
  33. B.-J. Chang, S. H. Lin, L.-J. Chou, and S.-Y. Chiang, “Subdiffraction scattered light imaging of gold nanoparticles using structured illumination,” Opt. Lett. 36(24), 4773–4775 (2011).
    [Crossref] [PubMed]
  34. D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
    [Crossref] [PubMed]
  35. K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
    [Crossref]
  36. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  37. P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
    [Crossref] [PubMed]
  38. P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
    [Crossref] [PubMed]
  39. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
    [Crossref] [PubMed]
  40. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
    [Crossref] [PubMed]
  41. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145 (1976).
    [Crossref]
  42. J. W. Goodman, “Statistical properties of laser speckle patterns,” 9–75 (1975).
  43. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [Crossref]
  44. N. Matsumoto, S. Okazaki, Y. Fukushi, H. Takamoto, T. Inoue, and S. Terakawa, “An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator,” Opt. Express 22(1), 633–645 (2014).
    [Crossref] [PubMed]
  45. Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
    [Crossref]
  46. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref] [PubMed]
  47. M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
    [Crossref] [PubMed]
  48. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  49. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
    [Crossref] [PubMed]
  50. E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena, “Holographic patterning of graphene-oxide films by light-driven reduction,” Opt. Lett. 39(14), 4263–4266 (2014).
    [Crossref] [PubMed]
  51. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
    [Crossref] [PubMed]
  52. U. Endesfelder and M. Heilemann, “Art and artifacts in single-molecule localization microscopy: beyond attractive images,” Nat. Methods 11(3), 235–238 (2014).
    [Crossref] [PubMed]
  53. H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
    [Crossref] [PubMed]
  54. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  55. D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
    [Crossref]

2017 (1)

2016 (4)

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

2015 (3)

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

2014 (5)

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena, “Holographic patterning of graphene-oxide films by light-driven reduction,” Opt. Lett. 39(14), 4263–4266 (2014).
[Crossref] [PubMed]

N. Matsumoto, S. Okazaki, Y. Fukushi, H. Takamoto, T. Inoue, and S. Terakawa, “An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator,” Opt. Express 22(1), 633–645 (2014).
[Crossref] [PubMed]

U. Endesfelder and M. Heilemann, “Art and artifacts in single-molecule localization microscopy: beyond attractive images,” Nat. Methods 11(3), 235–238 (2014).
[Crossref] [PubMed]

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

2013 (5)

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

R. Heintzmann, “Super-resolution imaging: Beyond the realm of fluorescence,” Nat. Photonics 7(6), 426–428 (2013).
[Crossref]

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

2012 (4)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

S. Chowdhury, A.-H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3(8), 1841–1854 (2012).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

2011 (3)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

B.-J. Chang, S. H. Lin, L.-J. Chou, and S.-Y. Chiang, “Subdiffraction scattered light imaging of gold nanoparticles using structured illumination,” Opt. Lett. 36(24), 4773–4775 (2011).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

2010 (3)

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

2008 (3)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
[Crossref] [PubMed]

2006 (4)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14(16), 7198–7209 (2006).
[Crossref] [PubMed]

2005 (4)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett. 30(24), 3350–3352 (2005).
[Crossref] [PubMed]

2004 (1)

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

2000 (2)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

S. W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Mol. Biotechnol. 16(2), 127–149 (2000).
[Crossref] [PubMed]

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1986 (3)

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

N. Bobroff, “Position measurement with a resolution and noise‐limited instrument,” Rev. Sci. Instrum. 57(6), 1152–1157 (1986).
[Crossref]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

1976 (1)

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Alderighi, M.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Ali, I.

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Allegrini, M.

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Ambrosio, A.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena, “Holographic patterning of graphene-oxide films by light-driven reduction,” Opt. Lett. 39(14), 4263–4266 (2014).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Bates, M.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Bertolotti, J.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Bewersdorf, J.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Bobroff, N.

N. Bobroff, “Position measurement with a resolution and noise‐limited instrument,” Rev. Sci. Instrum. 57(6), 1152–1157 (1986).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Braeckmans, K.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Cacialli, F.

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

Camposeo, A.

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Carella, A.

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carotenuto, G.

Cella Zanacchi, F.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Chakkarapani, S. K.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

Chang, B.-J.

Cheng, J.-X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Cheshnovsky, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Chiang, S.-Y.

Choi, C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Chou, L.-J.

Chowdhury, S.

Conchello, J.-A.

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

Dan, D.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Deschout, H.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Dhalla, A.-H.

Diaspro, A.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Endesfelder, U.

U. Endesfelder and M. Heilemann, “Art and artifacts in single-molecule localization microscopy: beyond attractive images,” Nat. Methods 11(3), 235–238 (2014).
[Crossref] [PubMed]

Ersoy, O.

Fang, N.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

Fornasiero, E. F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

Fukushi, Y.

Fuso, F.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Gao, B. Z.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Gao, P.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145 (1976).
[Crossref]

J. W. Goodman, “Statistical properties of laser speckle patterns,” 9–75 (1975).

Grumstrup, E. M.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Haglund, R. F.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

Heilemann, M.

U. Endesfelder and M. Heilemann, “Art and artifacts in single-molecule localization microscopy: beyond attractive images,” Nat. Methods 11(3), 235–238 (2014).
[Crossref] [PubMed]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

R. Heintzmann, “Super-resolution imaging: Beyond the realm of fluorescence,” Nat. Photonics 7(6), 426–428 (2013).
[Crossref]

Hell, S. W.

Henriques, R.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Hill, A. H.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Huang, B.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
[Crossref] [PubMed]

Inoue, T.

Isaacson, M.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Izatt, J.

Jang, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Jeong, K.-H.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Kang, S. H.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

Kanhaiya, P.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Karatutlu, A.

Keum, D.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Kim, K.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Labardi, M.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Lagendijk, A.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Latini, G.

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Lee, S.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

Lei, M.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Lelek, M.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

Lewis, A.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

Liang, X.

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

Lichtman, J. W.

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

Lin, S. H.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Little, W. R.

Liu, H.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Longo, A.

Maddalena, P.

E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena, “Holographic patterning of graphene-oxide films by light-driven reduction,” Opt. Lett. 39(14), 4263–4266 (2014).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Marrucci, L.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Marvel, R. E.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Massaro, E. S.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Matsumoto, N.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Mertz, J.

Mhlanga, M. M.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

Min, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Mlodzianoski, M.

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

Mosk, A. P.

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Nannizzi, S.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Neves, A. A. R.

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

Nicolais, L.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Niu, H.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Okazaki, S.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ong, D. C.

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

Orabona, E.

Paddock, S. W.

S. W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Mol. Biotechnol. 16(2), 127–149 (2000).
[Crossref] [PubMed]

Pardi, L.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, X.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Pevzner, A.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Pisignano, D.

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Polo, M.

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Pucci, A.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Qi, Y.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Qin, W.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Qu, J.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

Ruggeri, G.

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Ryu, S.-W.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Sapelkin, A. V.

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shao, Y.

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Solanki, S.

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

Song, M.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Takamoto, H.

Terakawa, S.

Tzang, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Valtorta, F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

van Putten, E. G.

Ventalon, C.

Vos, W. L.

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Wang, W.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wheeler, A. P.

Wichmann, J.

Wicker, K.

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

Winterhalder, M.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Xia, L.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

Yan, S.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yang, Y.

M. Song, A. Karatutlu, I. Ali, O. Ersoy, Y. Zhou, Y. Yang, Y. Zhang, W. R. Little, A. P. Wheeler, and A. V. Sapelkin, “Spectroscopic super-resolution fluorescence cell imaging using ultra-small Ge quantum dots,” Opt. Express 25(4), 4240–4253 (2017).
[Crossref] [PubMed]

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Yao, B.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Ye, J. C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Ye, T.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Yilmaz, H.

Yu, H.

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zhao, W.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

Zhou, Y.

Zhuang, X.

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Zimmer, C.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

Zumbusch, A.

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-Resolution Structured Pump–Probe Microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Appl. Phys. B (1)

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B 107(3), 653–657 (2013).
[Crossref]

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super‐resolution fluorescence near‐field scanning optical microscopy,” Appl. Phys. Lett. 49(11), 674–676 (1986).
[Crossref]

A. Ambrosio, M. Allegrini, G. Latini, and F. Cacialli, “Thermal processes in metal-coated fiber probes for near-field experiments,” Appl. Phys. Lett. 87(3), 033109 (2005).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (3)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications,” Biophys. J. 49(1), 269–279 (1986).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol. 12(5), 505–514 (2008).
[Crossref] [PubMed]

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. Ambrosio, A. Camposeo, A. Carella, F. Borbone, D. Pisignano, A. Roviello, and P. Maddalena, “Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores,” J. Appl. Phys. 107(8), 083110 (2010).
[Crossref]

J. Biomed. Opt. (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

A. Ambrosio, P. Maddalena, A. Carella, F. Borbone, A. Roviello, M. Polo, A. A. R. Neves, A. Camposeo, and D. Pisignano, “Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore,” J. Phys. Chem. C 115(28), 13566–13570 (2011).
[Crossref]

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Mol. Biotechnol. (1)

S. W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Mol. Biotechnol. 16(2), 127–149 (2000).
[Crossref] [PubMed]

Nano Lett. (1)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

A. Ambrosio, M. Alderighi, M. Labardi, L. Pardi, F. Fuso, M. Allegrini, S. Nannizzi, A. Pucci, and G. Ruggeri, “Near-field optical microscopy of polymer-based films with dispersed terthiophene chromophores for polarizer applications,” Nanotechnology 15(4), S270–S275 (2004).
[Crossref]

Nat. Commun. (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Nat. Methods (5)

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010).
[Crossref] [PubMed]

U. Endesfelder and M. Heilemann, “Art and artifacts in single-molecule localization microscopy: beyond attractive images,” Nat. Methods 11(3), 235–238 (2014).
[Crossref] [PubMed]

H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accurately localizing single emitters in fluorescence microscopy,” Nat. Methods 11(3), 253–266 (2014).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005).
[Crossref] [PubMed]

Nat. Photonics (5)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

R. Heintzmann, “Super-resolution imaging: Beyond the realm of fluorescence,” Nat. Photonics 7(6), 426–428 (2013).
[Crossref]

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8(5), 342–344 (2014).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Opt. Eng. (1)

D. C. Ong, S. Solanki, X. Liang, and X. Xu, “Analysis of laser speckle severity, granularity, and anisotropy using the power spectral density in polar-coordinate representation,” Opt. Eng. 51(5), 054301 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

N. Bobroff, “Position measurement with a resolution and noise‐limited instrument,” Rev. Sci. Instrum. 57(6), 1152–1157 (1986).
[Crossref]

Sci. Adv. (1)

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
[Crossref] [PubMed]

P. Zhang, S. Lee, H. Yu, N. Fang, and S. H. Kang, “Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation,” Sci. Rep. 5(1), 11447 (2015).
[Crossref] [PubMed]

P. Zhang, K. Kim, S. Lee, S. K. Chakkarapani, N. Fang, and S. H. Kang, “Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm,” Sci. Rep. 6(1), 32863 (2016).
[Crossref] [PubMed]

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (5)

J. W. Goodman, “Statistical properties of laser speckle patterns,” 9–75 (1975).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1997).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal Multi-Photon Microscopy,” in Handbook Of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer US, 2006), pp. 550–560.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 2
Fig. 2

(a) Speckle intensity pattern realized in the objective focal plane (scale bar 1 µm) by a random spatially varying kinoform displayed on the SLM. (b) Intensity probability distribution for our typical speckle patterns. (d) Scatter plot of two speckle patterns generated through two different random kinoforms. The left panel in (c) shows the zoomed view of the circled spot in the panel (a), while the right panel shows the reconstructed centroid distribution of this spot resulting from the elaboration of about 2000 CCD collected frames (scale bar 100 nm).

Fig. 3
Fig. 3

(a) SEM images of 100 nm in diameter silver disks. Nominal inner edge-to-edge distances in nm starting top left: 600-500-450-400-350-300; Center left: 300-250-200-150-130-110; Bottom left: 90-70-60-50-30-0. (b) H-SSLoM and (c) summed image resulting from the elaboration of the image stack of the backscattered light from the disk array illuminated with 3600 different speckle patterns. Scale bars 500 nm. Note: the “V” shaped structure appearing in the SEM image in panel (a) is a dust particle introduced on the sample before the SEM imaging and was not present during the optical imaging of the sample (panels (b) and (c)).

Fig. 4
Fig. 4

Zoomed view of the 90 nm separated disks. (a) SEM image and (b) normalized intensity profile along horizontal direction mediated along the vertical direction of the image. (c)-(d) H-SSLoM and its intensity profile. (e)-(f) Summed image and its intensity profile. Scale bar 50 nm.

Fig. 5
Fig. 5

(b) H-SSLoM and (c) summed images respectively of the clusters of silver nanoparticles dispersed on a grooved PDMS substrate, acquired for a defined position z1 of the axial piezo-actuated sample stage(d) H-SSLoM and (e) summed images of the same sample translated in the axial direction to the position z2 distanced of 500 nm from the position z1. Scale bars 500nm.

Fig. 6
Fig. 6

(a) Summed image of a series of nanometric scratches engraved onto a homogeneous flat silver surface illuminated by a series of 24000 different random speckle patterns with circular light polarization. The SLM refresh rate is set to 25 Hz, with total acquisition time of 16 min. (b) H-SSLoM image of the sample (scale bar 1 um). In the insets, a magnified view of two crossing scratches is showed (scale bar 500 nm).

Fig. 7
Fig. 7

(a) Simulated diffraction-limited and relative intensity profile of a spot passing the FWHM threshold control (whose width is represented by the dotted red line) imposed in the elaboration software. (b) Image and intensity profile of a spot having a FWHM larger than the maximum acceptable by the software. Scale bar of the simulated images 200 nm.

Fig. 8
Fig. 8

(a) Schematic illustration of the simulated square scatterers with side width of 150 nm and gap distance of 350 nm. (b) Simulated summed image and (c) simulated H-SSLoM image re of the scatterers in panel (a). (d) Simulated square scatterers at the gap distance of 50 nm. (e) Simulated summed image and (f) H-SSLoM image of the same scatterers in the panel (d). The length of the scale bars in the images is 200 nm.

Fig. 9
Fig. 9

(a) Simulated summed image and (b) Simulated H-SSLoM image with relative normalized intensity plot profiles of a non-reflective slit 150 nm in width inscribed onto an homogeneous reflective surface. Scale bar in the images 200 nm.

Fig. 10
Fig. 10

H-SSLoM images of two silver disks separated by a gap of 150 nm, reconstructed including different number N of independent illuminating speckle patterns in H-SSLoM reconstruction.

Fig. 11
Fig. 11

(a) Summed image (top) and H-SSLoM (bottom) images of an homogeneous region of a reflective silver surface, including the idicated number N of independent speckle illumianting pattern in the image recosntructuion. (b) Plot of the speckle severity in the H-SSLoM images as function of elaboration included frames N.

Fig. 12
Fig. 12

(a) H-SSLoM images of the groove of 100 nm in width including an increasing number N of independent speckle patterns in the reconstruction process. The corresponding number N is shown above each image. (b) Intensity plot profiles of the groove measured from 16 bit grayscale H-SSLoM images for the different N. (c) Visibility parameter of the groove plotted as function N.

Metrics