Abstract

Ultrashort pulse ablation has become a useful tool for micromachining and biomedical surgical applications. Implementation of ultrashort pulse ablation in confined spaces has been limited by endoscopic delivery and focusing of a high peak power pulse. Here we demonstrate ultrashort pulse ablation through a thin multi-core fiber (MCF) using wavefront shaping, which allows for focusing and scanning the pulse without requiring distal end optics and enables a smaller ablation tool. The intensity necessary for ablation is significantly higher than for multiphoton imaging. We show that the ultimate limitations of the MCF based ablation are the nonlinear effects induced by the pulse in the MCFs cores. We characterize and compare the performance of two devices utilizing a different number of cores and demonstrate ultrashort pulse ablation on a thin film of gold.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Delivery of focused short pulses through a multimode fiber

Edgar E. Morales-Delgado, Salma Farahi, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 23(7) 9109-9120 (2015)

Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber

Werner Göbel, Axel Nimmerjahn, and Fritjof Helmchen
Opt. Lett. 29(11) 1285-1287 (2004)

High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers

Ming-Yuan Cheng, Yu-Chung Chang, Almantas Galvanauskas, Pri Mamidipudi, Rupak Changkakoti, and Peter Gatchell
Opt. Lett. 30(4) 358-360 (2005)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
    [Crossref]
  4. H. K. Soong and J. B. Malta, “Femtosecond Lasers in Ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
    [Crossref] [PubMed]
  5. J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [Crossref]
  6. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
    [Crossref]
  7. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
    [Crossref]
  8. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  9. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
    [Crossref]
  10. F. Benabid, “Hollow-core Photonic Crystal Fibers: Guidances and Applications,” in Advanced Photonics, OSA Technical Digest (Online) (Optical Society of America, 2014), p. SoM4B.5.
  11. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  12. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
    [Crossref] [PubMed]
  13. S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biophotonics 4(7-8), 471–481 (2011).
    [Crossref] [PubMed]
  14. M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
    [Crossref] [PubMed]
  15. R. L. Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48(18), 3396–3400 (2009).
    [Crossref] [PubMed]
  16. S. P. Mekhail, G. Arbuthnott, and S. N. Chormaic, “Advances in Fibre Microendoscopy for Neuronal Imaging,” Opt. Data Process. Storage 2, (2016).
    [Crossref]
  17. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
    [Crossref] [PubMed]
  18. C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
    [Crossref] [PubMed]
  19. O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
    [Crossref] [PubMed]
  20. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
    [Crossref] [PubMed]
  21. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
    [Crossref] [PubMed]
  22. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
    [Crossref] [PubMed]
  23. D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
    [Crossref] [PubMed]
  24. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
    [Crossref] [PubMed]
  25. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  26. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  27. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref] [PubMed]
  28. N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532 (2015).
    [Crossref]
  29. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  30. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  31. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  32. M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement,” in Springer Handbook of Lasers and Optics, F. T. Prof, ed. (Springer New York, 2007), pp. 937–983.
  33. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
    [Crossref]
  34. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003).
    [Crossref] [PubMed]
  35. S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
    [Crossref] [PubMed]

2016 (2)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (4)

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

2003 (2)

1998 (1)

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

1996 (1)

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Andresen, E. R.

Bao, H.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Beaudou, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Benabid, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Ben-Yakar, A.

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Booth, T.

Bouwmans, G.

Bradley, T. D.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Chan, K. M. C.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Chen, P.

Chen, X.

Cheng, J.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Choi, W.

Chung, E.

Conkey, D. B.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532 (2015).
[Crossref]

Dearden, G.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Debord, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Dunsby, C.

Durr, N. J.

Dutin, C. F.

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Elahi, S. F.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biophotonics 4(7-8), 471–481 (2011).
[Crossref] [PubMed]

Everett, W. N.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Farahi, S.

Feit, M. D.

Ferhanoglu, O.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Fourcade-Dutin, C.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

French, P. M. W.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gerôme, F.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Gérôme, F.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Goy, A.

Gu, M.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Harzic, R. L.

Herman, S.

Hoy, C. L.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
[Crossref] [PubMed]

Kang, H.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Karajanagi, S. S.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kim, D.

Kim, J.

Kim, K. H.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

Kim, M.

Kim, Y.

Knight, J. C.

Kobler, J.

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Kobler, J. B.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

König, K.

Le Harzic, R.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Liu, C.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Loterie, D.

Malta, J. B.

H. K. Soong and J. B. Malta, “Femtosecond Lasers in Ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Messerschmidt, B.

Mielke, M.

Mitchell, C.

Molian, P. A.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

Monneret, S.

Moon, J.

Morales-Delgado, E. E.

Moser, C.

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Neil, M. A. A.

Omenetto, F. G.

Papadopoulos, I.

Papadopoulos, I. N.

Paterson, C.

Peng, X.

Perrie, W.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Perry, M. D.

Piyawattanametha, W.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Psaltis, D.

Ra, H.

Reichenbach, K. L.

Riemann, I.

Rigneault, H.

Romito, M.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

Rubenchik, A. M.

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Shang, S.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Shirk, M. D.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

Shore, B. W.

Solgaard, O.

Soong, H. K.

H. K. Soong and J. B. Malta, “Femtosecond Lasers in Ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Stasio, N.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532 (2015).
[Crossref]

Stone, J. M.

Stuart, B. C.

Subramanian, K.

Thompson, A. J.

Tsang, M.

Wang, T. D.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biophotonics 4(7-8), 471–481 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

Wang, Y. Y.

Warren, S. C.

Watkins, K.

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Weinigel, M.

Xu, C.

Yang, T. D.

Yildirim, M.

O. Ferhanoglu, M. Yildirim, K. Subramanian, and A. Ben-Yakar, “A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery,” Biomed. Opt. Express 5(7), 2023–2036 (2014).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Zeitels, S. M.

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

H. K. Soong and J. B. Malta, “Femtosecond Lasers in Ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

High Power Laser Sci. Eng. (1)

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutin, B. Debord, B. Beaudou, F. Gerôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1(01), 17–28 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. L. Hoy, O. Ferhanoglu, M. Yildirim, K. H. Kim, S. S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions,” IEEE J. Sel. Top. Quantum Electron. 20(2), 242–255 (2014).
[Crossref]

J. Biomed. Opt. (2)

C. L. Hoy, W. N. Everett, M. Yildirim, J. Kobler, S. M. Zeitels, and A. Ben-Yakar, “Towards endoscopic ultrafast laser microsurgery of vocal folds,” J. Biomed. Opt. 17(3), 038002 (2012).
[Crossref] [PubMed]

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biophotonics 4(7-8), 471–481 (2011).
[Crossref] [PubMed]

J. Laser Appl. (1)

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

J. Microsc. (1)

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Opt. Express (9)

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. A. Neil, C. Paterson, P. M. W. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref] [PubMed]

N. Stasio, D. B. Conkey, C. Moser, and D. Psaltis, “Light control in a multicore fiber using the memory effect,” Opt. Express 23(23), 30532 (2015).
[Crossref]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
[Crossref] [PubMed]

E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: an Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (4)

F. Benabid, “Hollow-core Photonic Crystal Fibers: Guidances and Applications,” in Advanced Photonics, OSA Technical Digest (Online) (Optical Society of America, 2014), p. SoM4B.5.

S. P. Mekhail, G. Arbuthnott, and S. N. Chormaic, “Advances in Fibre Microendoscopy for Neuronal Imaging,” Opt. Data Process. Storage 2, (2016).
[Crossref]

G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement,” in Springer Handbook of Lasers and Optics, F. T. Prof, ed. (Springer New York, 2007), pp. 937–983.

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (4675 KB)      Ablation of thin gold film

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Visualization of wavefront shaping for focusing through MCF. (a) The facet of MCF with white light illumination. (b) The phase field input to the MCF facet to create a focus. The color wheel in the upper right indicates the relative phase value from zero (blue) to 2π (red). The wavefront at the distal end of the MCF with (c) low peak power and (d) high peak power input after the wavefront shown in (b) has propagated through the MCF. Both clearly show the quadratic phase field, although the high peak power case shows deterioration of the wavefront. The focus formed 800 µm from the facet of the MCF with (e) low peak power and (f) high peak power input. The intensity is shown in a log scale. The scale bar in each figure is 50 µm.

Fig. 2
Fig. 2

The optical setup for measuring the transmission matrix through the MCF. A collimated, pulsed beam is split into illumination and reference arms. The illumination path images an SLM onto the facet of a MCF. The light transmitted through the MCF is imaged onto a CMOS detector. The reference arm interferes with the illumination arm on the detector to make an off-axis digital hologram. A delay line in the reference path allows for tuning the temporal delay of the reference pulses. An interferometric autocorrelator is built into the system for pulse length measurement. MCF: multi-core fiber, HWP: halfwave plate, PBS: polarized beamsplitter, BS: beamsplitter, SLM: spatial light modulator, D: dichroic filter, S: sample, L: lens, O: objective.

Fig. 3
Fig. 3

The focusing efficiency when focusing ultrashort pulses of varying pulse widths through a MCF compared to the input pulse energy. The three regimes of the 500 fs pulse focusing efficiency are marked by I, II, and III.

Fig. 4
Fig. 4

The measured spectrum of the in focus (blue curve) and away from focus (orange, yellow and purple curves) light for different input pulse energies with (a) 500 fs and (b) 750 fs input pulse width, also showing the in focus spectrum which did not change with input energy. (c) The in focus pulse width dependence on input pulse energy.

Fig. 5
Fig. 5

The estimated peak intensity in focus plotted for increasing input pulse energy and pulse width.

Fig. 6
Fig. 6

The characterization of the 10,000 core system. (a) The focusing efficiency, (b) the measured spectrum of the in focus and background light for different input pulse energies with 500 fs pulse width, (c) the in focus pulse width dependence on input pulse energy, and (b) the estimated peak intensity.

Fig. 7
Fig. 7

Widefield transmission optical microscope images of ultrashort pulse ablated samples of thin gold film on glass. (a) EPFL letters, 106 µm x 82 µm. (b) The Matterhorn and Swiss shield, 120 µm x 120 µm.

Tables (1)

Tables Icon

Table 1 A comparison of the two optical systems described.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I m =C | n N t mn A n e i ϕ n | 2 ,
Δ ϕ n SPM = 2 n 2 P n L λ ω n 2 ,
I m =C | n N t mn A n e i( ϕ n +Δ ϕ n SPM ) | 2 .

Metrics