Abstract

A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field

Jian-Ping Yu, Sai Chen, Fei Fan, Jie-Rong Cheng, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(2) 663-673 (2018)

Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control

M. Tayyab Nouman, Ji Hyun Hwang, Mohd. Faiyaz, Kye-Jeong Lee, Do-Young Noh, and Jae-Hyung Jang
Opt. Express 26(10) 12922-12929 (2018)

Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals

Yun-Yun Ji, Fei Fan, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(10) 12852-12862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [Crossref]
  2. K. H. Jin, Y. G. Kim, S. H. Cho, J. C. Ye, and D. S. Yee, “High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation,” Opt. Express 20(23), 25432–25440 (2012).
    [Crossref] [PubMed]
  3. W. L. Lu and A. Argyros, “Terahertz Spectroscopy and Imaging With Flexible Tube-Lattice Fiber Probe,” J. Lightwave Technol. 32(23), 4019–4025 (2014).
  4. H. Shams, M. J. Fice, K. Balakier, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Photonic generation for multichannel THz wireless communication,” Opt. Express 22(19), 23465–23472 (2014).
    [Crossref] [PubMed]
  5. G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
    [Crossref]
  6. J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
    [Crossref] [PubMed]
  7. F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
    [Crossref] [PubMed]
  8. K. Shiraishi, S. Higuchi, K. Muraki, and H. Yoda, “Silver-film subwavelength gratings for polarizers in the terahertz and mid-infrared regions,” Opt. Express 24(18), 20177–20186 (2016).
    [Crossref] [PubMed]
  9. K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
    [Crossref] [PubMed]
  10. C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39(8), 2511–2513 (2014).
    [Crossref] [PubMed]
  11. K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Te. 34(11), 663–681 (2013).
    [Crossref]
  12. A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013).
    [Crossref] [PubMed]
  13. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  14. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  15. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  16. S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
    [Crossref] [PubMed]
  17. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  18. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
    [Crossref] [PubMed]
  19. D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref] [PubMed]
  20. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [Crossref] [PubMed]
  21. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  22. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  23. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
    [Crossref] [PubMed]
  24. L. Wang, X. W. Lin, X. Liang, J. B. Wu, W. Hu, Z. G. Zheng, B. B. Jin, Y. Q. Qin, and Y. Q. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  25. L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
    [Crossref]
  26. Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
    [Crossref] [PubMed]
  27. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [Crossref] [PubMed]
  28. C. T. Wang, C. L. Wu, H. W. Zhang, T. H. Lin, and C. K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
    [Crossref]
  29. L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
    [Crossref]
  30. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
    [Crossref]
  31. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  32. M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
    [Crossref] [PubMed]
  33. L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
    [Crossref]

2017 (1)

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

2016 (9)

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

C. T. Wang, C. L. Wu, H. W. Zhang, T. H. Lin, and C. K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
[Crossref]

K. Shiraishi, S. Higuchi, K. Muraki, and H. Yoda, “Silver-film subwavelength gratings for polarizers in the terahertz and mid-infrared regions,” Opt. Express 24(18), 20177–20186 (2016).
[Crossref] [PubMed]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

2015 (4)

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (8)

A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013).
[Crossref] [PubMed]

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Te. 34(11), 663–681 (2013).
[Crossref]

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

2012 (4)

2006 (1)

2004 (1)

Ahmed, N.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Ahn, J. H.

Altmann, K.

Argyros, A.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bai, J. J.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

Balakier, K.

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Buchnev, O.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chang, S. J.

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Chen, C. H.

Chen, C. Y.

Chen, H. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, M.

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

Chen, P.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Chen, P. H.

Chen, S.

Chen, Y.

Cheng, H.

Chigrinov, V. G.

Cho, S. H.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Dabrowski, R.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Danilov, S. N.

Decker, M.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Deyanov, R. Z.

Dierking, I.

Fan, F.

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fan, R. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Fedotov, V. A.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Ferreira, P. M.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Fice, M. J.

Gallot, G.

Ganichev, S. D.

Garbat, K.

Gong, C.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Gong, Y.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, W. H.

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Gu, Y.

Han, H.

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Hattori, H. T.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

He, T.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

He, Y. N.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Higuchi, S.

Hong, M.

Hsieh, C. F.

Hu, W.

Huang, X. R.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Ivanov, A. A.

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, S. C.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jin, B. B.

Jin, K. H.

Jördens, C.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Te. 34(11), 663–681 (2013).
[Crossref]

Kaczmarek, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Kang, B.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Kaveev, A. K.

Kaveeva, E. G.

Keum, H.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Kim, S.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Kim, Y. G.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Koch, M.

Kropotov, G. I.

Lee, C. K.

Lee, S.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Lee, Y.

Li, J.

Li, Z.

Liang, X.

Lim, M.

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Lin, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Lin, T. H.

Lin, X. W.

Lin, Y. F.

Liu, J.

Liu, L. M.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Liu, W.

Liu, Y. M.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Lu, W. L.

Lu, Y. Q.

Masson, J. B.

Min, B.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Mironov, E.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Muraki, K.

Neshev, D. N.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Niu, J.

Olbrich, P.

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Pan, C. L.

Pan, R. P.

Park, H.

Parrott, E. P. J.

Peng, R. W.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Powell, D. A.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Qin, Y. Q.

Qiu, C. W.

Raihan, M. R.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Redlich, B.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, X. P.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Renaud, C. C.

Reuter, M.

Rogers, J. A.

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Ruan, X.

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Seeds, A. J.

Shadrivov, I. V.

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

Shams, H.

Shen, J. L.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Shin, Y. J.

Shiraishi, K.

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Singh, R.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Sun, L.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Tang, T. T.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, J.

Tsygankova, E. V.

Tzibizov, I. A.

van Dijk, F.

Wallauer, J.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Walther, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Wang, C. T.

Wang, D.

Wang, G. C.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Wang, L.

Wang, M.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, X. H.

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Wang, Z. J.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wiesauer, K.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Te. 34(11), 663–681 (2013).
[Crossref]

Wu, C. L.

Wu, J. B.

Wu, Y.

Xiong, X.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Xu, S. T.

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

Yang, C. S.

Yang, H.

Yang, J.

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

Yang, K. L.

Yang, L.

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ye, J. C.

Yee, D. S.

Yoda, H.

Yu, P.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, B.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Zhang, H. W.

Zhang, J. N.

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Zhang, X.

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

Zhang, X. Z.

L. Yang, F. Fan, M. Chen, X. Z. Zhang, J. J. Bai, and S. J. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 272217 (2016).
[Crossref]

Zhdanov, A. I.

Zheludev, N. I.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zheng, Z. G.

Zhou, Y.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zoth, C.

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (2)

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Fan, W. H. Gu, X. H. Wang, and S. J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

IEEE Trans. Terah. Sci. Tech. (1)

L. M. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. Terah. Sci. Tech. 3(6), 827–831 (2013).
[Crossref]

J. Infrared Millim. Te. (1)

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared Millim. Te. 34(11), 663–681 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

G. C. Wang, J. N. Zhang, B. Zhang, T. He, Y. N. He, and J. L. Shen, “Photo-excited terahertz switch based on composite metamaterial structure,” Opt. Commun. 374, 64–68 (2016).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Zhang, and S. J. Chang, “Active terahertz metamaterials based on liquid-crystal induced transparency and absorption,” Opt. Commun. 382(1), 42–48 (2017).
[Crossref]

Opt. Express (9)

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
[Crossref] [PubMed]

Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

H. Shams, M. J. Fice, K. Balakier, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Photonic generation for multichannel THz wireless communication,” Opt. Express 22(19), 23465–23472 (2014).
[Crossref] [PubMed]

K. H. Jin, Y. G. Kim, S. H. Cho, J. C. Ye, and D. S. Yee, “High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation,” Opt. Express 20(23), 25432–25440 (2012).
[Crossref] [PubMed]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24(23), 26431–26443 (2016).
[Crossref] [PubMed]

K. Shiraishi, S. Higuchi, K. Muraki, and H. Yoda, “Silver-film subwavelength gratings for polarizers in the terahertz and mid-infrared regions,” Opt. Express 24(18), 20177–20186 (2016).
[Crossref] [PubMed]

K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Opt. Express 21(10), 12395–12400 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (3)

Sci. Rep. (3)

M. Chen, F. Fan, S. T. Xu, and S. J. Chang, “Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves,” Sci. Rep. 6(1), 38562 (2016).
[Crossref] [PubMed]

J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, “Tunable reflecting terahertz filter based on chirped metamaterial structure,” Sci. Rep. 6(1), 38732 (2016).
[Crossref] [PubMed]

S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, “Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing,” Sci. Rep. 6(1), 27621 (2016).
[Crossref] [PubMed]

Science (2)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The structure of dielectric metasurface with L-S structure (a) The SEM image of the metasurface; (b) SEM image of line-square unite cell in the metasurface. (c) 3D structure diagram of this metasurface in the experiment configuration.
Fig. 2
Fig. 2 (a) Experimental time-domain pulse signals of reference and metasurface with different polarization directions. (b) Experimental effective refractive index and (c) transmission spectra of metasurface with different polarization directions. (d) Simulated transmission spectra of metasurface with different polarization directions.
Fig. 3
Fig. 3 Simulated field distributions of dielectric metasurface with different structures and polarization angles at 0.72THz. (a) L-S compound structure with θ = 0° and (b) θ = 90°; (c) single square structure with θ = 0° and (d) θ = 90°; (e) single line structure with θ = 0° and (f) θ = 90°.
Fig. 4
Fig. 4 (a) Photo of LC filled dielectric metasurface; (b) The cross-section and geometric parameters of LC filled dielectric metasurface.
Fig. 5
Fig. 5 Schematic diagrams of three samples and their effective refractive index spectra of LC filled in dielectric metasurface with the increase of electric field. (a) Bare silicon substrate; (b) 90° metasurface; (c) 0° metasurface.
Fig. 6
Fig. 6 Phase shift of LC filled bare silicon and dielectric metasurface v.s. the biased electric field at 0.7THz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| P(ω) |=20log(| E s (ω) |/| E r (ω) |)
n(ω)=1+ cΔδ(ω) ωd
Δδ=δ(E)δ(0)

Metrics