Abstract

A single SLM (spatial light modulator) full-color holographic 3-D display based on sampling and selective frequency-filtering methods is proposed. Spatially-sampled R(red), G(green) and B(blue)-holograms can provide periodic 3 × 3 arrays of their frequency spectrums. Thus, by allocating three groups of three spectrums to each color hologram, and selectively filtering out those spectrums with their own spectrum filtering masks (SFMs), frequency-filtered R, G and B-holograms can be obtained. These holograms are synthesized into a single color-multiplexed hologram, and optically reconstructed into a color distortion-free full-color 3-D object on the 4-f lens system, where color-dispersion due to the pixelated structure of the SLM can be removed with the optical versions of SFMs. Fourier-optical analysis and experiments with 3-D color objects in motion confirm the feasibility of the proposed system in the practical application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integral imaging-based large-scale full-color 3-D display of holographic data by using a commercial LCD panel

Xiao-Bin Dong, Ling-Yu Ai, and Eun-Soo Kim
Opt. Express 24(4) 3638-3651 (2016)

Seamless full color holographic printing method based on spatial partitioning of SLM

Youngmin Kim, Elena Stoykova, Hoonjong Kang, Sunghee Hong, Joosup Park, Jiyong Park, and Jisoo Hong
Opt. Express 23(1) 172-182 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
    [Crossref]
  2. D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
    [Crossref]
  3. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  4. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  5. S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
    [Crossref] [PubMed]
  6. Ag, HoloEye Photonics, “GAEA 10 Megapixel Phase Only Spatial Light Modulator (Reflective),” http://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/ .
  7. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
    [Crossref] [PubMed]
  8. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref] [PubMed]
  9. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  10. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
    [Crossref] [PubMed]
  11. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  12. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
    [Crossref] [PubMed]
  13. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  14. F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
    [Crossref]
  15. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
    [Crossref] [PubMed]
  16. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [Crossref] [PubMed]
  17. R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
    [Crossref]
  18. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
    [Crossref] [PubMed]
  19. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
    [Crossref]
  20. W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
    [Crossref]
  21. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
    [PubMed]
  22. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref] [PubMed]
  23. T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
    [Crossref] [PubMed]
  24. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991).
  26. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  27. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
    [Crossref] [PubMed]
  28. S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting[J],” Sci. Rep. 5, 14056 (2015).
  29. M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y. S. Ho, and E. S. Kim, “Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes,” Opt. Express 23(3), 2101–2120 (2015).
    [Crossref] [PubMed]
  30. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014).
    [Crossref] [PubMed]
  31. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
    [Crossref] [PubMed]
  32. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
    [Crossref] [PubMed]
  33. S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [Crossref] [PubMed]
  34. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

2016 (1)

2015 (4)

M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y. S. Ho, and E. S. Kim, “Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes,” Opt. Express 23(3), 2101–2120 (2015).
[Crossref] [PubMed]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting[J],” Sci. Rep. 5, 14056 (2015).

2014 (4)

2013 (3)

2012 (3)

2011 (3)

2010 (1)

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

2009 (2)

2008 (4)

2007 (1)

2006 (1)

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

2003 (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

1997 (1)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Brooker, G.

Chen, N.

Chlipala, M.

Choi, H. J.

Dong, X.-B.

Ducin, I.

Hahn, J.

Häussler, R.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Ho, Y. S.

Hong, J.

Hu, B.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

Ito, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref] [PubMed]

J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
[Crossref] [PubMed]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[Crossref] [PubMed]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

Jia, J.

Jiang, W.

Jung, Y. J.

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Kakarenko, K.

Kakue, T.

Kang, H.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Kim, D.

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Kim, E.

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Kim, E. S.

Kim, E.-S.

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting[J],” Sci. Rep. 5, 14056 (2015).

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
[Crossref] [PubMed]

S.-G. Kim, B. Lee, and E.-S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Appl. Opt. 36(20), 4784–4791 (1997).
[Crossref] [PubMed]

Kim, H.

Kim, J.-M.

Kim, M. K.

Kim, S.-C.

M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y. S. Ho, and E. S. Kim, “Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes,” Opt. Express 23(3), 2101–2120 (2015).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting[J],” Sci. Rep. 5, 14056 (2015).

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47(32), 5986–5995 (2008).
[Crossref] [PubMed]

Kim, S.-G.

Kim, Y.

Kolodziejczyk, A.

Kozacki, T.

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Kujawinska, M.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Kwon, M.-W.

Lee, B.

Leister, N.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Li, X.

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Makowski, M.

Masuda, N.

Min, S. W.

Nakayama, H.

Nishitsuji, T.

Niwa, M.

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Oikawa, M.

Okada, N.

Onural, L.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Pan, Y.

Park, H.

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Park, J. H.

Ro, Y.

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Rosen, J.

Sasaki, H.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Schwerdtner, A.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Senoh, T.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Shimobaba, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref] [PubMed]

J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
[Crossref] [PubMed]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[Crossref] [PubMed]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

Shiraki, A.

Sun, Z.

Suszek, J.

Sypek, M.

Takada, N.

Takahashi, T.

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Wang, Y.

Weng, J.

Xue, G.

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

Yaras, F.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Yoda, T.

Yoon, J.-H.

Yoon, S.-E.

Zaperty, W.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Zhang, B.

Zhang, Z.

Zhao, Q.

Appl. Opt. (5)

J. Disp. Technol. (1)

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Opt. Express (15)

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[Crossref] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[Crossref] [PubMed]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[Crossref] [PubMed]

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014).
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space,” Opt. Express 22(14), 16925–16944 (2014).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y. S. Ho, and E. S. Kim, “Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes,” Opt. Express 23(3), 2101–2120 (2015).
[Crossref] [PubMed]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23(8), 9852–9857 (2015).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Photonics News (1)

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

Opt. Rev. (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

Photonics Lett. Pol. (1)

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Proc. SPIE (1)

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Sci. Rep. (2)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, and E.-S. Kim, “Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting[J],” Sci. Rep. 5, 14056 (2015).

Other (4)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

D. Kim, Y. J. Jung, E. Kim, Y. Ro, and H. Park, “Human brain response to visual fatigue caused by stereoscopic depth perception,” in Proceedings of IEEE Conference on Digital Signal Processing (IEEE, 2011), pp.1–5.
[Crossref]

Ag, HoloEye Photonics, “GAEA 10 Megapixel Phase Only Spatial Light Modulator (Reflective),” http://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/ .

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991).

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (18814 KB)      3-D ratating cube
» Visualization 2: AVI (7833 KB)      3-D flying air-plane

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Configuration of the proposed single SLM-based full-color holographic 3-D display.

Fig. 2
Fig. 2

NLUT-based CGH generation process: (a) Three object points on the object plane of z1, (b) PFP for the depth plane of z1, (c) Shifting and adding processes of the PFP, (d) Finally generated CGH.

Fig. 3
Fig. 3

Conceptual diagram of the unique shift-invariance property of the PFP in the NLUT.

Fig. 4
Fig. 4

(a) Input R-color image, (b), (c) R-hologram generated with the original NLUT and its frequency spectrum, (b′), (c′) R-hologram generated with the sampling NLUT and its frequency spectrum and (d), (d′) Reconstructed images from the original and sampled holograms.

Fig. 5
Fig. 5

(a) Sampled color holograms, (b) 3 × 3 frequency spectrums, (c) Color-dependent SFMs, (d) Selectively-filtered spectrums, (e) FF-three color holograms, (f) FF-CMH.

Fig. 6
Fig. 6

Optical SFM-based frequency-filtering and reconstruction of the FF-CMH on the optical 4-f lens system.

Fig. 7
Fig. 7

Overall experiment setup composed of digital and optical systems: (a) Digital system, (b) Optical system (LC: Laser collimator, BE: Beam expander, BS: Beam splitter, M: Mirror).

Fig. 8
Fig. 8

Generation of three kinds of FF-R, G and B-holograms for the test object of ‘Cube’ with their SFMs on the Fourier domain and multiplexing them into a single FF-CMH.

Fig. 9
Fig. 9

Optical reconstruction process of the FF-CMH on the 4-f lens system with the fabricated pinhole-type optical SFM: (a) Optical 4-f lens system, (b) Frequency spectrums of the FF-CMH, (c) Optical SFM, (d) Optically-filtered frequency spectrums of the FF-CMH.

Fig. 10
Fig. 10

Four kinds of optically reconstructed color images: (a), (a’) Input 3-D color objects of ‘Cube’ and ‘Airplane’, (b), (b’) Reconstructed color images with both of the CMH-CD and SLM-CD, (c), (c’) Reconstructed color images with the CMH-CD, (d), (d’) Reconstructed images with the SLM-CD and (e), (e’) Reconstructed color images without both of the CMH-CD and SLM-CD on the proposed system.

Fig. 11
Fig. 11

Two kinds of test video scenarios: (a) Five sample images of a self-revolving 3-D cube at the 1st, 25th, 50th, 75th and 100th video frames, (b) Five sample images of a flying airplane at the 1st, 17th, 25th, 32th and 50th video frames.

Fig. 12
Fig. 12

Experimental results for two kinds of test video scenarios of Fig. 11: (a) Five sample experimental results of the self-revolving 3-D ‘Cube’ at the 1st, 25th, 50th,75th and 100th video frames (see Visualization 1), (b) Five sample experimental results of the flying 3-D ‘Airplane’ at the 1st, 17th, 25th,32th and 50th video frames(see Visualization 2).

Tables (1)

Tables Icon

Table 1 Center locations and diameters of nine pinholes fabricated on the optical SFM

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H R (x,y)= p=1 N a Rp R-PF P R (x,y;s x Rp ,s y Rp , z p )
H G (x,y)= p=1 N a Gp G-PF P G (x,y;s x Gp ,s y Gp , z p )
H B (x,y)= p=1 N a Bp B-PF P B (x,y;s x Bp ,s y Bp , z p )
PFP(x,y)=exp(j k 0 z 0 ) j k 0 2πz exp[ j k 0 ( x 2 + y 2 ) 2z ]
Horizontal resolution of the PFP:[ h x +( s× O x ) ]
Vertical resolution of the PFP:[ h y +( s× O y ) ]

Metrics