Abstract

In this article we present a theoretical investigation of gold-silica-gold nanostructures and their properties depending on layer thickness and diameter. We found a remarkable sensitive behavior in the coupling of surface and bulk plasmons with respect to the outer geometry of the disk-like resonators leading to a superposition of distinct modes with a time-dependent amplitude structure. Furthermore, we show a rather complex temporal evolution of plasmonic surface modes depending on the top layer thickness and the asymmetry of the metal disk radii. The results suggest the coherent control of the time-dependent resonant coupling between surface and volume modes by adaptive pulse shaping and foster the field of time-dependent spectroscopy of thin film hybrid nanostructures with single layer thickness down to the two-dimensional limit.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks

Desalegn T. Debu, Pijush K. Ghosh, David French, and Joseph B. Herzog
Opt. Mater. Express 7(1) 73-84 (2017)

Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting

Yoshiaki Nishijima, Lorenzo Rosa, and Saulius Juodkazis
Opt. Express 20(10) 11466-11477 (2012)

Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll
J. Opt. Soc. Am. B 25(4) 659-667 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).
  2. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).
  3. A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).
  4. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).
  5. M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).
  6. M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope”, Chem. Soc. Rev. 43, 3865–3883 (2014).
  7. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).
  8. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies”, J. Phys. D. Appl. Phys. 44, 464002 (2011).
  9. A. Losquin and T. Lummen, “Electron microscopy methods for space-, energy-, and time-resolved plasmonics”, Front. Phys. 12, 127301 (2017).
  10. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).
  11. E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).
  12. S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).
  13. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).
  14. A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).
  16. D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).
  17. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).
  18. M. Weiland and T. Clemens, “Discrete electromagnetism with the finite integration technique,” Progress In Electromagnetics Research 32, 65–87 (2001).
  19. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).
  20. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  21. P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379 (1972).
  22. I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).
  23. X. Wang, K.P. Chen, M. Zhao, and D.D. Nolte, “Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films”, Opt. Express 18, 24859 (2010).
  24. S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).
  25. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

2017 (1)

A. Losquin and T. Lummen, “Electron microscopy methods for space-, energy-, and time-resolved plasmonics”, Front. Phys. 12, 127301 (2017).

2014 (3)

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope”, Chem. Soc. Rev. 43, 3865–3883 (2014).

I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).

2013 (3)

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

2012 (1)

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

2011 (1)

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies”, J. Phys. D. Appl. Phys. 44, 464002 (2011).

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

X. Wang, K.P. Chen, M. Zhao, and D.D. Nolte, “Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films”, Opt. Express 18, 24859 (2010).

2007 (4)

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

2005 (1)

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

2004 (1)

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

2002 (2)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

2001 (1)

M. Weiland and T. Clemens, “Discrete electromagnetism with the finite integration technique,” Progress In Electromagnetics Research 32, 65–87 (2001).

1972 (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379 (1972).

Adamo, G.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Altissimo, M.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Ardana, F.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Arnold, C.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Asaduzzaman, A.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Baltuska, A.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Blümel, L.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Campbell, S.D.

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

Cao, J.

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Cavalieri, A. L.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Charra, F.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies”, J. Phys. D. Appl. Phys. 44, 464002 (2011).

Chen, K.P.

Chew, S.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379 (1972).

Clemens, T.

M. Weiland and T. Clemens, “Discrete electromagnetism with the finite integration technique,” Progress In Electromagnetics Research 32, 65–87 (2001).

Corkum, P.

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Davis, T.J.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

de Abajo, F. J. G.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Deymier, P.

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Dmitriev, A.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

Douillard, L.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies”, J. Phys. D. Appl. Phys. 44, 464002 (2011).

Drescher, M.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Du, L.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

Earl, S.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Echenique, P. M.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).

Furube, A.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

Geuquet, N.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Gomez, D.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Goulielmakis, E.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Guggenmos, A.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Guo, C.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

Hara, K.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

Harth, A.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Heinzmann, U.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Hendel, S.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Hengster, J.

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

Henrard, L.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Holzwarth, R.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Horvath, B.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Itatani, J.

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Ivanov, M.

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379 (1972).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Käll, M.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

Katoh, R.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

Kienberger, R.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Kleineberg, U.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Kling, M.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Kling, M. F.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

Kociak, M.

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope”, Chem. Soc. Rev. 43, 3865–3883 (2014).

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Krausz, F.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Kubo, A.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

L’Huillier, A.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Laref, S.

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Li, J.-H.

I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).

Lin, I.-B.

I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).

Liz-Marzán, L.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Lorek, E.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Losquin, A.

A. Losquin and T. Lummen, “Electron microscopy methods for space-, energy-, and time-resolved plasmonics”, Front. Phys. 12, 127301 (2017).

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Lummen, T.

A. Losquin and T. Lummen, “Electron microscopy methods for space-, energy-, and time-resolved plasmonics”, Front. Phys. 12, 127301 (2017).

Lupetti, M.

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

MacDonald, K.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Marsell, E.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Mårsell, E.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Mauritsson, J.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Mikkelsen, A.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Miranda, M.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Miyawaki, M.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Müller, N.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Muralidharan, K.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

Myroshnychenko, V.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Nelayah, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Nolte, D.D.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Pakizeh, T.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

Pastoriza-Santos, I.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Pearce, K.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Petek, H.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

Quéré, F.

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

Roberts, A.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Rudawski, P.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Runge, K.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Schmidt, B.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Schmidt, J.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Scrinzi, A.

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Sheu, T. W.-H.

I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).

Späth, C.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Stephan, O.

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope”, Chem. Soc. Rev. 43, 3865–3883 (2014).

Stockman, M. I.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Süßmann, F.

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Sutherland, D. S.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

Tachiya, M.

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

Teo, Z.

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Uiberacker, M.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Uphues, T.

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Wang, X.

Weiland, M.

M. Weiland and T. Clemens, “Discrete electromagnetism with the finite integration technique,” Progress In Electromagnetics Research 32, 65–87 (2001).

Westerwalbesloh, T.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Xu, H.

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

Yakovlev, V.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

Yakovlev, V. S.

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Yudin, G.

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Zhao, M.

Zheludev, N.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

Ziolkowski, R.W.

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

Appl. Phys. Lett. (1)

S.D. Campbell, R.W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces”, Appl. Phys. Lett. 103, 091106 (2013).

Chem. Soc. Rev. (1)

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope”, Chem. Soc. Rev. 43, 3865–3883 (2014).

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Commun. 181, 687–702 (2010).

Front. Phys. (1)

A. Losquin and T. Lummen, “Electron microscopy methods for space-, energy-, and time-resolved plasmonics”, Front. Phys. 12, 127301 (2017).

J. Am. Chem. Soc. (1)

A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles”, J. Am. Chem. Soc. 129, 14852–14853 (2007).

J. Phys. D. Appl. Phys. (1)

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes : photoemission and scanning tunnelling luminescence microscopies”, J. Phys. D. Appl. Phys. 44, 464002 (2011).

Nano Lett. (2)

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. MacDonald, L. Henrard, L. Liz-Marzán, N. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study”, Nano Lett. 12, 4172–4180 (2012).

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in nanostructured silver films”, Nano Lett. 5, 1123–1127 (2005).

Nano Letters (1)

D. Gomez, Z. Teo, M. Altissimo, T.J. Davis, S. Earl, and A. Roberts, “The Dark Side of Plasmonics”, Nano Letters 13, 3722–3728 (2013).

Nat. Photonics (1)

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope”, Nat. Photonics 1, 539–544 (2007).

Nature (1)

A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter”, Nature 449, 1029–1032 (2007).

Opt. Express (3)

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R.W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanoetric gold thin films: a density functional theory study”, Opt. Express 21, 177826 (2013).

I.-B. Lin, T. W.-H. Sheu, and J.-H. Li, “Effects of exchange correlation functional on optical permittivity of gold and electromagnetic responses”, Opt. Express 22, 223929 (2014).

X. Wang, K.P. Chen, M. Zhao, and D.D. Nolte, “Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films”, Opt. Express 18, 24859 (2010).

Phys. Rev. B (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370–4379 (1972).

Phys. Rev. Lett. (3)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems”, Phys. Rev. Lett. 88, 674021 (2002).

M. Lupetti, J. Hengster, T. Uphues, and A. Scrinzi, “Attosecond Photoscopy of Surface Plasmon Polaritons”, Phys. Rev. Lett. 113, 113903 (2014).

J. Itatani, F. Quéré, G. Yudin, M. Ivanov, F. Krausz, and P. Corkum, “Attosecond Streak Camera”, Phys. Rev. Lett. 88, 173903 (2002).

Progress In Electromagnetics Research (1)

M. Weiland and T. Clemens, “Discrete electromagnetism with the finite integration technique,” Progress In Electromagnetics Research 32, 65–87 (2001).

Science (2)

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves”, Science 305, 1267–1269 (2004).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).

Small (1)

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators”, Small 3, 294–299 (2007).

Other (3)

E. Mårsell, A. Losquin, C. Guo, A. Harth, E. Lorek, M. Miranda, C. Arnold, H. Xu, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy (Wiley-VCH Verlag GmbH & Co. KGaA, 2016).

S. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. Kling, U. Kleineberg, E. Marsell, C. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy – “ATTO-PEEM”(Wiley-VCH Verlag GmbH & Co. KGaA, 2015).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (4462 KB)      Video of electric field of the asymmetric sandwich
» Visualization 2: MP4 (4565 KB)      Video of electric field of the symmetric sandwich

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Simulation setup: a gold-silica-gold nanodisk sandwich is illuminated from above with an ultra short laser pulse (λ = 550to1500 nm, τ ≤ 5 fs) or monochromatically at the resonance wavelength. The sandwich has a total height of 21 nm and a radius of 54 nm of the top thin disk and 44 nm of the bottom thick disk.
Fig. 2
Fig. 2 False color plot of the absorption cross section spectra for increasing thickness of the thin gold disk (a) and the spectra for 3 nm and 1 nm thickness (b) and (c), respectively. The corresponding electric near field component perpendicular to the sandwich surface is monitored after monochromatic excitation at the different resonance wavelengths and shown next to the corresponding peak.
Fig. 3
Fig. 3 False color plots of the absorption cross section spectra for increasing radius of the thick bottom gold disk for a thickness of 1 nm and 3 nm of the thin gold disk (a) and (b), respectively.
Fig. 4
Fig. 4 Temporal evolution of the out-of-plane component of the electric field evaluated along a line parallel to the incident electric field crossing the center of the sandwich for the asymmetric (a) – (c) and symmetric sandwich (d) – (f) monitored at three different positions. The surface position monitoring is shown in (a) and (d), the center in (b) and (e) and at the bottom in (c) and (f). The electric field is normalized to the maximum value. The electric near field evolution on the surface of the asymmetric and symmetric sandwich are shown in Visualization 1 and Visualization 2 as video, respectively.
Fig. 5
Fig. 5 Time dependent integrated ut-of-plane electric field for left and right half disk on the sandwich surface calculated for the asymmetric (a) and symmetric (b) (10-10-1) sandwich. The splitting of the sandwich is perpendicular to the electric field polarisation vector
Fig. 6
Fig. 6 Simulation of (10-10-6) to (10-10-36) disk sandwiches with top disk radius of 44 nm and bottom disk radius of 54 nm: (a) spectra and (b) sectional view of the electric fields
Fig. 7
Fig. 7 Sectional view of the phase in the high (a) and low (b) energy resonance for the (10-10-10) sandwich
Fig. 8
Fig. 8 Broadband excitation pulse (a) spectrum and (b) the normalized temporal electric field. The e-field vector is parallel to the sandwich surface.
Fig. 9
Fig. 9 Temporal evolution of the electric field evaluated along a line parallel to the incident electric field crossing the center of the sandwich for the asymmetric (a) – (c) and symmetric sandwich (d) – (f) monitored at three different positions. The surface position monitoring is shown in (a) and (d), the center in (b) and (e) and at the bottom in (c) and (f).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 1 = 662 n m λ 2 = 709 n m λ 3 = 802 n m λ 4 = 1021 n m
λ 1 * = 650 n m λ 2 * = 720 n m

Metrics