Abstract

We develop a rigorous model to simulate an LCD’s contrast ratio (CR) and viewing angle by considering the depolarization effect in thin-film transistor substrate, LC layer, color filter (CF) array, etc. To mitigate the depolarization effect, we propose a new device structure by adding a thin in-cell polarizer between LC layer and CF array. Based on the analysis using our new model, the maximum CR of a multi-domain vertical alignment (MVA) LCD can reach > 20,000:1, while for the fringe-field switching (FFS) mode it can reach > 3000:1. We also discuss other approaches to further enhance the CR. Our model is a powerful tool to analyze the CR degradation mechanism and to guide the future LCD device and material optimizations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays

Haiwei Chen, Ruidong Zhu, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(3) 1973-1984 (2017)

Submillisecond-response liquid crystal for high-resolution virtual reality displays

Fangwang Gou, Haiwei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(7) 7984-7997 (2017)

Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles

Byeonggon Kim, Hyun Gyu Kim, Gyu-Yeop Shim, Ji-Sub Park, Kyung-Il Joo, Dong-Jin Lee, Joun-Ho Lee, Ji-Ho Baek, Byeong Koo Kim, Yoonseuk Choi, and Hak-Rin Kim
Appl. Opt. 57(2) 119-129 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd Ed. (John Wiley & Sons, 2014).
  2. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
    [Crossref]
  3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
    [Crossref]
  4. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref]
  5. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).
    [Crossref]
  6. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  7. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  8. Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
    [Crossref]
  9. Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
    [Crossref]
  10. K. Sumiyoshi, “Light leakage analysis of in-plane-switching liquid crystal displays,” Jpn. J. Appl. Phys. 48(1212R), 121601 (2009).
    [Crossref]
  11. M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
    [Crossref]
  12. H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
    [Crossref]
  13. Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
    [Crossref]
  14. Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
    [Crossref]
  15. J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
    [Crossref]
  16. J. S. Park, “Contrast ratio of colorant film: Theoretical consideration and effect of polymeric binder,” J. Appl. Polym. Sci. 117(1), 428–433 (2010).
  17. M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
    [Crossref]
  18. H. Takemoto, T. Fuchida, and M. Miyatake, “Analysis of depolarized light-scattering in LCD panel and proposal of LCD systems for enhancing contrast ratio,” SID Symp. Dig. Tech. Papers 40(1), 514–517 (2009).
    [Crossref]
  19. Y. Utsumi, S. Takeda, H. Kagawa, D. Kajita, I. Hiyama, Y. Tomioka, T. Asakura, M. Shimura, M. Ishii, K. Miyazaki, and K. Ono, “Improved contrast ratio in IPS-Pro LCD TV by using quantitative analysis of depolarized light leakage from component materials,” SID Symp. Dig. Tech. Papers 39(1), 129–132 (2008).
    [Crossref]
  20. K. J. Kim, T. R. Lee, H. H. Son, D. K. Kim, J. H. Baek, J. H. Kim, and M. Jun, “Realization of true black quality in in-plane switching mode for LCD TV applications,” SID Symp. Dig. Tech. Papers 41(1), 487–490 (2010).
    [Crossref]
  21. K. Okumoto, T. Tsuchiya, K. Yonemura, S. Nagano, O. Tanina, A. Yuuki, T. Fujino, and T. Satake, “A novel simulation method in in-plane switching mode panel with considering light scattering behavior,” SID Symp. Dig. Tech. Papers 46(1), 1555–1558 (2015).
    [Crossref]
  22. M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
    [Crossref]
  23. R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
    [Crossref]
  24. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
    [Crossref]
  25. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
    [Crossref]
  26. Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
    [Crossref]
  27. S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
    [Crossref]
  28. Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
    [Crossref]
  29. F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
    [Crossref]
  30. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
    [Crossref]

2017 (1)

2014 (1)

2011 (2)

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
[Crossref]

2010 (2)

J. S. Park, “Contrast ratio of colorant film: Theoretical consideration and effect of polymeric binder,” J. Appl. Polym. Sci. 117(1), 428–433 (2010).

M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
[Crossref]

2009 (3)

K. Sumiyoshi, “Light leakage analysis of in-plane-switching liquid crystal displays,” Jpn. J. Appl. Phys. 48(1212R), 121601 (2009).
[Crossref]

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

2008 (4)

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

2007 (1)

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

2006 (3)

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

2005 (3)

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

2004 (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

2002 (1)

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Akimoto, M.

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Chen, H.

Fennell, L.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Ge, Z.

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Heidrich, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hiyama, I.

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

Hong, Q.

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Hsieh, H. S.

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Hsu, J. S.

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

Huang, Y. P.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Ishiguro, M.

M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
[Crossref]

Ishii, M.

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Iwakawa, J.

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Kagawa, H.

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Kajita, D.

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Kato, Y.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Kim, H. K.

H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
[Crossref]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, S. H.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Kobayashi, N.

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Kobayashi, S.

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Kondo, K.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

Lee, D. Y.

H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
[Crossref]

Lee, K. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Lee, S. H.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

Li, M. C.

Lin, F. C.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Lin, H. C.

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

Lin, Y. H.

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

Lu, R.

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Luo, Z.

Matsuyama, S.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

Nakamura, H.

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

Nakanishi, S.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Ohyama, T.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Ono, K.

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Park, J. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Park, J. S.

J. S. Park, “Contrast ratio of colorant film: Theoretical consideration and effect of polymeric binder,” J. Appl. Polym. Sci. 117(1), 428–433 (2010).

Paukshto, M.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Peng, F.

Peng, K. H.

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Saitoh, Y.

M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
[Crossref]

Sakaguchi, Y.

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Sekiguchi, M.

M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
[Crossref]

Shieh, H. P. D.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Smith, P.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Song, J. K.

H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
[Crossref]

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Sumiyoshi, K.

K. Sumiyoshi, “Light leakage analysis of in-plane-switching liquid crystal displays,” Jpn. J. Appl. Phys. 48(1212R), 121601 (2009).
[Crossref]

Taira, Y.

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

Takatoh, K.

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Takeda, S.

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Tomioka, Y.

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Tsai, W. C.

Ukai, Y.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Umeda, Y.

M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
[Crossref]

Utsumi, Y.

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
[Crossref]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Wei, C. M.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Wu, S. T.

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Wu, T. X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Xu, D.

Yamada, F.

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

Yamashita, O.

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

Yang, K. H.

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

Yoneya, M.

M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
[Crossref]

Zhu, R.

Zhu, X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

ACM Trans. Graph. (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Appl. Phys. Lett. (4)

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93(12), 121104 (2008).
[Crossref]

J. Appl. Phys. (2)

J. S. Hsu, Y. H. Lin, H. C. Lin, and K. H. Yang, “Thermally induced light leakage in in-plane-switching liquid crystal displays,” J. Appl. Phys. 105(3), 033503 (2009).
[Crossref]

M. Yoneya, Y. Utsumi, and Y. Umeda, “Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays,” J. Appl. Phys. 98(1), 016106 (2005).
[Crossref]

J. Appl. Polym. Sci. (1)

J. S. Park, “Contrast ratio of colorant film: Theoretical consideration and effect of polymeric binder,” J. Appl. Polym. Sci. 117(1), 428–433 (2010).

J. Disp. Technol. (2)

R. Lu, Q. Hong, S. T. Wu, K. H. Peng, and H. S. Hsieh, “Quantitative comparison of color performances between IPS and MVA LCDs,” J. Disp. Technol. 2(4), 319–326 (2006).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High transmittance in-plane-switching liquid crystal displays,” J. Disp. Technol. 2(2), 114–120 (2006).
[Crossref]

J. Soc. Inf. Disp. (3)

Y. Ukai, T. Ohyama, L. Fennell, Y. Kato, M. Paukshto, P. Smith, O. Yamashita, and S. Nakanishi, “Current status and future prospect of in-cell-polarizer technology,” J. Soc. Inf. Disp. 13(1), 17–24 (2005).
[Crossref]

F. Yamada, H. Nakamura, Y. Sakaguchi, and Y. Taira, “Sequential-color LCD based on OCB with an LED backlight,” J. Soc. Inf. Disp. 10(1), 81–85 (2002).
[Crossref]

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Jpn. J. Appl. Phys. (6)

Y. Utsumi, D. Kajita, S. Takeda, H. Kagawa, I. Hiyama, Y. Tomioka, and K. Ono, “Correlation of light scattering of homogenous alignment liquid crystal layers with material properties of liquid crystals,” Jpn. J. Appl. Phys. 47(44R), 2205–2208 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, and K. Ono, “Quantitative analysis method for measuring light leakage intensity of three primary color filters placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(55R), 3518–3521 (2008).
[Crossref]

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A3R), 1047–1050 (2007).
[Crossref]

Y. Utsumi, S. Takeda, I. Hiyama, Y. Tomioka, M. Ishii, and K. Ono, “Light leakage behaviors of homogenously aligned liquid crystal layers placed between crossed polarizers,” Jpn. J. Appl. Phys. 47(44R), 2144–2148 (2008).
[Crossref]

K. Sumiyoshi, “Light leakage analysis of in-plane-switching liquid crystal displays,” Jpn. J. Appl. Phys. 48(1212R), 121601 (2009).
[Crossref]

M. Ishiguro, M. Sekiguchi, and Y. Saitoh, “New approach to enhance contrast ratio at normal incidence by controlling the retardation of optical compensation film in vertically aligned liquid crystal displays,” Jpn. J. Appl. Phys. 49(33R), 030208 (2010).
[Crossref]

Liq. Cryst. (1)

H. K. Kim, D. Y. Lee, and J. K. Song, “Contrast ratio of twisted nematic liquid crystal cells and its improvement,” Liq. Cryst. 38(10), 1239–1244 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

M. Akimoto, J. Iwakawa, N. Kobayashi, S. Kobayashi, and K. Takatoh, “Evaluation of liquid crystal alignment ability of polyimide by analyzing the black state of homogeneous alignment liquid crystal display,” Mol. Cryst. Liq. Cryst. 543(1), 69–835 (2011).
[Crossref]

Nanotechnology (1)

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Other (6)

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).
[Crossref]

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd Ed. (John Wiley & Sons, 2014).

H. Takemoto, T. Fuchida, and M. Miyatake, “Analysis of depolarized light-scattering in LCD panel and proposal of LCD systems for enhancing contrast ratio,” SID Symp. Dig. Tech. Papers 40(1), 514–517 (2009).
[Crossref]

Y. Utsumi, S. Takeda, H. Kagawa, D. Kajita, I. Hiyama, Y. Tomioka, T. Asakura, M. Shimura, M. Ishii, K. Miyazaki, and K. Ono, “Improved contrast ratio in IPS-Pro LCD TV by using quantitative analysis of depolarized light leakage from component materials,” SID Symp. Dig. Tech. Papers 39(1), 129–132 (2008).
[Crossref]

K. J. Kim, T. R. Lee, H. H. Son, D. K. Kim, J. H. Baek, J. H. Kim, and M. Jun, “Realization of true black quality in in-plane switching mode for LCD TV applications,” SID Symp. Dig. Tech. Papers 41(1), 487–490 (2010).
[Crossref]

K. Okumoto, T. Tsuchiya, K. Yonemura, S. Nagano, O. Tanina, A. Yuuki, T. Fujino, and T. Satake, “A novel simulation method in in-plane switching mode panel with considering light scattering behavior,” SID Symp. Dig. Tech. Papers 46(1), 1555–1558 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a function of polarizer thickness. No depolarization effect is considered.
Fig. 2
Fig. 2 Schematic diagram for accounting the depolarization effect in an LCD panel. CF: color filter; LC: liquid crystal; TFT: thin-film transistor.
Fig. 3
Fig. 3 Flow chart of the proposed simulation model.
Fig. 4
Fig. 4 (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a function of depolarization coefficient for MVA mode. Depolarization effect is considered.
Fig. 5
Fig. 5 Simulated contrast ratio and normalized transmittance for MVA mode with depolarization coefficient A = 0.00009. Note: 24-µm thick polarizer is the reference with CR ≈5000:1 and efficiency = 1.
Fig. 6
Fig. 6 (a) Simulated transmittance of bright state and dark state, and (b) simulated CR as a function of depolarization coefficient for FFS mode, where depolarization effect is considered.
Fig. 7
Fig. 7 Simulated contrast ratio and normalized transmittance for FFS mode with depolarization coefficient A = 0.00039. Note: 24-µm thick polarizer is the reference for CR≈2000:1 and efficiency = 1.
Fig. 8
Fig. 8 (a) Simulated contrast ratio and (b) contrast ratio improvement as a function of depolarization coefficient.
Fig. 9
Fig. 9 Simulated isocontrast contour for (a) ideal MVA mode using TechWiz, where CRmax = 11,437:1, CRmin = 132:1, and CRave = 4350:1. (b) Real MVA with A≈0.00009, where CRmax = 5011:1, CRmin = 130:1, and CRave = 2392:1. For both cases, the polarizer thickness is 24 µm.
Fig. 10
Fig. 10 Simulated isocontrast contour for (a) a realistic MVA with polarizer thickness = 29 µm and A = 0.00009, where CRmax = 8129:1, CRmin = 147:1, and CRave = 3501:1. (b) Same MVA but with polarizer thickness = 29 µm and A = 0.000071, where CRmax = 10,066:1, CRmin = 148:1, and CRave = 4077:1.
Fig. 11
Fig. 11 Simulated isocontrast contour for (a) an ideal FFS mode using TechWiz, where CRmax = 13,150:1, CRmin = 105:1, and CRave = 4467:1. (b) A realistic FFS with depolarization coefficient A = 0.00039, where CRmax = 2024:1, CRmin = 100:1, and CRave = 1184:1. For both cases, the polarizer thickness is 24 µm.
Fig. 12
Fig. 12 Schematic diagram of the proposed device structure with an in-cell polarizer.
Fig. 13
Fig. 13 Working mechanism of (a) conventional LCD panel with depolarization effects, and (b) the proposed LCD panel with decoupled depolarization effects.
Fig. 14
Fig. 14 Flow chart of the proposed simulation model for new structure configuration.
Fig. 15
Fig. 15 Simulated isocontrast contour for the proposed device configuration in MVA mode. (a) Polarizer thickness is 24 µm, and (b) Polarizer thickness is 29 µm. For the 24-µm thick polarizer: CRmax = 12,277:1, CRmin = 132:1, and CRave = 4685:1. For the 29-µm thick polarizer: CRmax = 23,163:1, CRmin = 149:1, and CRave = 7223:1.
Fig. 16
Fig. 16 Simulated isocontrast contour for the new FFS with an in-cell polarizer. (a) Polarizer thickness is 24 µm, and (b) polarizer thickness is 29 µm. For the 24-µm thick polarizer: CRmax = 3002:1, CRmin = 115:1, and CRave = 1576:1. For the 29-µm thick polarizer: CRmax = 3349:1, CRmin = 115:1, and CRave = 1819:1.
Fig. 17
Fig. 17 Schematic diagram of the proposed structure with dual in-cell polarizers. In this case, the polarizer and the analyzer could be removed.
Fig. 18
Fig. 18 Schematic diagram of the proposed structure with a reflective polarizer or wire-grid polarizer.
Fig. 19
Fig. 19 Schematic diagram of the field-sequential color display.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I x ' = I x (1A)+ I y A,
I y ' = I x A+ I y (1A),
A eff = A 1 + A 2 + A 3 +.
I 1x ' = I 1x (1 A 1 )+ I 1y A 1 I 1y ' = I 1x A 1 + I 1y (1 A 1 ) I 2x ' = I 1x ' (1 A 2 )+ I 1y ' A 2 I 2y ' = I 1x ' A 2 + I 1y ' (1 A 2 )
I 2x ' = I 1x [1( A 1 + A 2 )+2 A 1 A 2 ]+ I 1y [( A 1 + A 2 )2 A 1 A 2 ], I 2y ' = I 1x [( A 1 + A 2 )2 A 1 A 2 ]+ I 1y [1( A 1 + A 2 )+2 A 1 A 2 ].
I 2x ' I 1x (1 A eff )+ I 1y A eff , I 2y ' I 1x A eff + I 1y (1 A eff ).
C R lim = T p /A.

Metrics