Abstract

We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter

Keijiro Suzuki, Guangwei Cong, Ken Tanizawa, Sang-Hun Kim, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 23(7) 9086-9092 (2015)

Setting up meshes of interferometers – reversed local light interference method

David A. B. Miller
Opt. Express 25(23) 29233-29248 (2017)

60  dB high-extinction auto-configured Mach–Zehnder interferometer

C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien
Opt. Lett. 41(22) 5318-5321 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  2. A. L. Lentine, C. T. DeRose, P. S. Davids, N. J. D. Martinez, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, T. Bauer, M. Wiwi, and P. B. Chu, “Silicon photonics platform for national security applications,” in 2015 IEEE Aerospace Conference, (IEEE, 2015), pp. 1–9.
  3. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based Quantum Key Distribution,” https://arxiv.org/abs/1509.00768 (2015).
  4. J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express 21(4), 5171–5181 (2013).
    [Crossref] [PubMed]
  5. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  6. C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. Thiessen, H.-K. Lo, and J. K. S. Poon, “Silicon photonic transmitter for polarization-encoded quantum key distribution,” Optica 3(11), 1274–1278 (2016).
    [Crossref]
  7. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  8. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  9. D. A. B. Miller, “Attojoule Optoelectronics for Low-Energy Information Processing and Communications: a Tutorial Review,” https://arxiv.org/abs/1609.05510 (2016).
  10. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [Crossref]
  11. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  12. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest (Optical Society of America, 2010), paper OThX2.
    [Crossref]
  13. C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-Chip Silicon Photonics 100-Gb/s Coherent Transceiver,” in Optical Fiber Communication Conference: Postdeadline Papers, (Optical Society of America, 2014), paper Th5C.1.
    [Crossref]
  14. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
    [Crossref]
  15. B. J. Offrein, “Silicon Photonics for the Data Center,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W3A.4.
    [Crossref]
  16. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
    [Crossref] [PubMed]
  17. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  18. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
    [Crossref]
  19. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
    [Crossref]
  20. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8×8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
    [Crossref]
  21. K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
    [Crossref] [PubMed]
  22. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  23. C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien, “60 dB high-extinction auto-configured Mach-Zehnder interferometer,” Opt. Lett. 41(22), 5318–5321 (2016).
    [Crossref] [PubMed]
  24. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  25. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
    [Crossref]
  26. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
    [Crossref]
  27. K. Hamamoto and H. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
    [Crossref]
  28. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
    [Crossref]
  29. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
    [Crossref] [PubMed]
  30. D. E. Browne and T. Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
    [Crossref] [PubMed]
  31. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref] [PubMed]

2016 (4)

2015 (4)

K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter,” Opt. Express 23(7), 9086–9092 (2015).
[Crossref] [PubMed]

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

K. Hamamoto and H. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

2014 (2)

2013 (2)

J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express 21(4), 5171–5181 (2013).
[Crossref] [PubMed]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

2010 (4)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

2009 (2)

X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
[Crossref] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

2006 (2)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

2005 (2)

D. E. Browne and T. Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref] [PubMed]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

2001 (1)

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref] [PubMed]

1999 (1)

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref] [PubMed]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Browne, D. E.

D. E. Browne and T. Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref] [PubMed]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Chiba, T.

Chrostowski, L.

Chu, T.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Coles, P. J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Cong, G.

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Denoyer, G.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Fathpour, S.

Fedeli, J. M.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fu, Y.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Goh, T.

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Hamamoto, K.

K. Hamamoto and H. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hasama, T.

Hattori, K.

Himeno, A.

Igarashi, Y.

Ikeda, K.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Ishikawa, H.

Jaeger, N. A. F.

Jalali, B.

Jiang, H.

K. Hamamoto and H. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Kawashima, H.

Kim, S.-H.

Kintaka, K.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Le Roux, X.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Lin, S.

Liu, H.-C.

Lo, H.-K.

Lu, Z.

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Lütkenhaus, N.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Ma, C.

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Marshall, G. D.

Masahara, M.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Matsukawa, T.

Mikkelsen, J. C.

Miller, D. A. B.

Mookherjea, S.

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Namiki, S.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

O’Brien, J. L.

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ohno, M.

Okuno, M.

Ong, J. R.

Paesani, S.

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Poon, J. K. S.

Qiang, X.

Rasigade, G.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref] [PubMed]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Rudolph, T.

D. E. Browne and T. Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref] [PubMed]

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Sacher, W. D.

Santagati, R.

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Sarovar, M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Shoji, Y.

Soh, D. B. S.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Suda, S.

Sun, X.

Suzuki, K.

Tadokoro, H.

Takahashi, H.

Tang, W.

Tang, Z.

Tanizawa, K.

Thiessen, T.

Thompson, M. G.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Urayama, J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Wang, J.

Wang, Y.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Wilkes, C. M.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Xu, F.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Yanagihara, M.

Yang, Y.

Yariv, A.

Ye, T.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Yun, H.

Zhang, F.

Zhou, X.

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Voltage, Compact, Depletion-Mode, Silicon Mach-Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Hamamoto and H. Jiang, “Active MMI devices: concept, proof, and recent progress,” J. Phys. D Appl. Phys. 48(38), 383001 (2015).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (2)

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86(22), 5188–5191 (2001).
[Crossref] [PubMed]

D. E. Browne and T. Rudolph, “Resource-Efficient Linear Optical Quantum Computation,” Phys. Rev. Lett. 95(1), 010501 (2005).
[Crossref] [PubMed]

Phys. Rev. X (1)

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-Referenced Continuous-Variable Quantum Key Distribution Protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent Progress in High-Speed Silicon-Based Optical Modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[Crossref]

Other (7)

D. A. B. Miller, “Attojoule Optoelectronics for Low-Energy Information Processing and Communications: a Tutorial Review,” https://arxiv.org/abs/1609.05510 (2016).

A. L. Lentine, C. T. DeRose, P. S. Davids, N. J. D. Martinez, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, T. Bauer, M. Wiwi, and P. B. Chu, “Silicon photonics platform for national security applications,” in 2015 IEEE Aerospace Conference, (IEEE, 2015), pp. 1–9.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based Quantum Key Distribution,” https://arxiv.org/abs/1509.00768 (2015).

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest (Optical Society of America, 2010), paper OThX2.
[Crossref]

C. R. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, and S. Y. Park, “Single-Chip Silicon Photonics 100-Gb/s Coherent Transceiver,” in Optical Fiber Communication Conference: Postdeadline Papers, (Optical Society of America, 2014), paper Th5C.1.
[Crossref]

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
[Crossref]

B. J. Offrein, “Silicon Photonics for the Data Center,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W3A.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two microscope images of CMZI AMs consisting of (a) directional or (b) adiabatic couplers. Due to the limited space, the third adiabatic coupler is not completely shown in (b). Each CMZI AM is composed of 3 couplers, 4 TO phase shifters and 2 EO phase shifters. (c) Schematic of a CMZI AM. Laser light is coupled into the CMZI AM from the upper left input port and output from the right side.

Fig. 2
Fig. 2

(a) Normalized optical intensity at 5b and 5c when the TO1 phase shifter is biased to provide phase shift between 0 and 2π. Contour images of the optical power outputs from the (b) bar and (c) cross output ports of the CMZI AM showing high ERs.

Fig. 3
Fig. 3

Experimental demonstration of ultrahigh ER achieved between 1480 and 1640 nm. Output optical power contour images at (a) 1540 nm and (b) 1600 nm when voltage bias is swept across both the TO phase shifters. (c) An output optical power curve extracted from (a) by varying the TO2 bias while keeping the TO1 bias constant. (d) Measured ERs of a CMZI AM comprising adiabatic couplers covering the spectral regime of 1480-1640 nm. (e) Measured ERs of a CMZI AM comprising directional couplers covering the spectral regimes of 1280-1375 nm and 1480-1640 nm. (f) Experimentally measured (blue dots) and calculated (red curves) ERs of a CMZI AM when the laser is detuned away from the optimum wavelength.

Fig. 4
Fig. 4

Simulated optical output power from both the bar and cross output ports when the directional coupler’s split ratios are 74:26, 75:25, 95:5 and 5:95. (a), (d), (g) and (j) Optical power distribution achieved at the locations of 5b and 5c when the TO1 phase shifter is tuned between 0 and 2π. (b), (e), (h) and (k) Optical output power from the bar output port of 6b when the TO phase shifters are tuned between 0 and 2π. (c), (f), (i) and (l) Optical output power from the cross output port of 6c when the TO phase shifters are tuned between 0 and 2π. The black dots and circles in (d) show the conditions when the ultrahigh ERs are observed for bar and cross output ports, respectively.

Fig. 5
Fig. 5

2D contour images of simulated results of the optical output powers from the (a) bar and (b) cross ports when the three directional couplers have different split ratios of 30:70, 60:40 and 85:15. Different light propagation losses of −0.5 dB, −0.35 dB, −0.17 dB and −0.65 dB are also incorporated in the calculation to simulate the fabrication imperfection at different waveguide sections.

Fig. 6
Fig. 6

Eye-diagrams of high speed amplitude modulation of CMZI AM at 1, 5, and 10 Gb/s.

Fig. 7
Fig. 7

(a) 2D contour images of simulated output optical phase when TO1 and TO2 phase shifters are modulated. The white and black dashed lines cross one of the two conditions that ultrahigh ER is achieved. (b) Output optical phase curves along the white or black dashed line shown in (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 4b = E 1 R 1b R 2b e iα + E 1 R 1c R 2c e iπ .
E 4c = E 1 R 1b R 2c e i( π 2 α ) + E 1 R 1c R 2b e i π 2 .
S 2 = δ 2 + κ 2 .

Metrics