Abstract

This paper reports on the color-tunable emission from organic semiconductor films composed of Alq3 doped with DCM. The composite system was excited using an ultraviolet laser to enable the emission of light from green to red regions of the visible spectra based on the nonradiative Förster transfer mechanism. A cholesteric liquid crystal film was used as a blue emitter, while simultaneously serving as a temperature-controlled optical filter based on Bragg reflection to tune the emission color of the organic semiconductor films. The corresponding color points on the CIE chromaticity diagram located near the black-body locus exhibited a wide color-tuning range within a narrow temperature range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Very compact tunable solid-state laser utilizing a thin-film organic semiconductor

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer
Opt. Lett. 26(9) 593-595 (2001)

Tuning the correlated color temperature of white LED with a guest-host liquid crystal

Haiwei Chen, Zhenyue Luo, Ruidong Zhu, Qi Hong, and Shin-Tson Wu
Opt. Express 23(10) 13060-13068 (2015)

Reflective–emissive photoluminescent cholesteric liquid crystal display

Jang-Kyum Kim, Suk-Hwan Joo, and Jang-Kun Song
Appl. Opt. 52(34) 8280-8286 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  2. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
    [Crossref]
  3. K. Choi, J. Lee, and H. J. Suk, “Context-based presets for lighting setup in residential space,” Appl. Ergon. 52, 222–231 (2016).
    [Crossref] [PubMed]
  4. A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).
  5. K. Choi and H. J. Suk, “Dynamic lighting system for the learning environment: performance of elementary students,” Opt. Express 24(10), A907–A916 (2016).
    [Crossref] [PubMed]
  6. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
    [Crossref]
  7. J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
    [Crossref]
  8. H. Chen, Z. Luo, R. Zhu, Q. Hong, and S.-T. Wu, “Tuning the correlated color temperature of white LED with a guest-host liquid crystal,” Opt. Express 23(10), 13060–13068 (2015).
    [Crossref] [PubMed]
  9. C.-C. Huang, Y.-Y. Kuo, S.-H. Chen, W.-T. Chen, and C.-Y. Chao, “Liquid-crystal-modulated correlated color temperature tunable light-emitting diode with highly accurate regulation,” Opt. Express 23(3), A149–A156 (2015).
    [Crossref] [PubMed]
  10. H. Chen, R. Zhu, Y.-H. Lee, and S.-T. Wu, “Correlated color temperature tunable white LED with a dynamic color filter,” Opt. Express 24(6), A731–A739 (2016).
    [Crossref] [PubMed]
  11. V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
    [Crossref]
  12. Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88–98 (2004).
    [Crossref]

2016 (3)

2015 (3)

2014 (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

2013 (1)

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

2002 (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

1998 (1)

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Armytage, P. G.

A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).

Ayash, A. A.

A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).

Baldo, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Brener, I.

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

Bulovic, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Burrows, P.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Chao, C.-Y.

Chen, H.

Chen, S.-H.

Chen, W.-T.

Choi, K.

K. Choi, J. Lee, and H. J. Suk, “Context-based presets for lighting setup in residential space,” Appl. Ergon. 52, 222–231 (2016).
[Crossref] [PubMed]

K. Choi and H. J. Suk, “Dynamic lighting system for the learning environment: performance of elementary students,” Opt. Express 24(10), A907–A916 (2016).
[Crossref] [PubMed]

Coltrin, M. E.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Crawford, M. H.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Fischer, A. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Forrest, S.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Hong, Q.

Huang, C.-C.

Kane, R. T.

A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).

Karlicek, R. F.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Kelley, D. F.

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

Khalfin, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Koleske, D. D.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Kozlov, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Kuo, Y.-Y.

Lee, J.

K. Choi, J. Lee, and H. J. Suk, “Context-based presets for lighting setup in residential space,” Appl. Ergon. 52, 222–231 (2016).
[Crossref] [PubMed]

Lee, Y.-H.

Luo, Z.

Lyo, S. K.

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Ohno, Y.

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

Parthasarathy, G.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Smith, D.

A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).

Subramania, G. S.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Suk, H. J.

K. Choi, J. Lee, and H. J. Suk, “Context-based presets for lighting setup in residential space,” Appl. Ergon. 52, 222–231 (2016).
[Crossref] [PubMed]

K. Choi and H. J. Suk, “Dynamic lighting system for the learning environment: performance of elementary students,” Opt. Express 24(10), A907–A916 (2016).
[Crossref] [PubMed]

Thompson, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Tsao, J. Y.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

Wang, G. T.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wierer, J. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wu, S.-T.

You, Y.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

Zhu, R.

Adv. Opt. Mater. (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Appl. Ergon. (1)

K. Choi, J. Lee, and H. J. Suk, “Context-based presets for lighting setup in residential space,” Appl. Ergon. 52, 222–231 (2016).
[Crossref] [PubMed]

Color Res. Appl. (1)

A. A. Ayash, R. T. Kane, D. Smith, and P. G. Armytage, “The influence of color on student emotion, heart rate, and performance in learning environments,” Color Res. Appl. 41(2), 196–205 (2015).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

J. Appl. Phys. (1)

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096–4108 (1998).
[Crossref]

J. Disp. Technol. (1)

J. Y. Tsao, I. Brener, D. F. Kelley, and S. K. Lyo, “Quantum-dot-based solid-state lighting with electric-field-tunable chromaticity,” J. Disp. Technol. 9(6), 419–426 (2013).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88–98 (2004).
[Crossref]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration showing sample structure and experiment setup.
Fig. 2
Fig. 2 (a) Absorption spectra of fluorescent materials. (b) Emission spectra of Films A to F excited at 325 nm at an intensity of 0.25 W/cm2. The inset presents the emission spectra of PVK and CLC under the same excitation conditions.
Fig. 3
Fig. 3 (a) Images of each light-emitting film and (b) corresponding color points on CIE chromaticity diagram. The coordinates of the white point are (1/3,1/3).
Fig. 4
Fig. 4 Reflection spectra of CLC at various temperatures.
Fig. 5
Fig. 5 Photoluminescence spectra of Devices (a) D and (b) E at various temperatures.
Fig. 6
Fig. 6 Photoluminescence images of Devices (a) D and (b) E at various temperatures: (from left to right) 29, 30, 32, 34, 36, and 37°C.
Fig. 7
Fig. 7 (a) CIE chromaticity coordinates of Devices D (green dots) and E (red dots) at various temperatures. The cyan line indicates the black-body locus; (b) Magnified view of data points, in which gray lines indicate various correlated color temperatures: (from left to right) 10000, 7500, 6500, 5000, 4000, and 3000K.

Tables (1)

Tables Icon

Table 1 Weight ratios of PVK:Alq3:DCM in six films

Metrics