Abstract

We report on quantum frequency conversion of near-infrared photons from a wave-length of 854 nm to the telecommunication O-band at 1310 nm with 8 % overall conversion efficiency. Entangled photon pairs at 854 nm are generated via type-II spontaneous parametric down conversion. One photon is mixed with a strong pump field in a nonlinear ridge waveguide for its conversion to 1310 nm. We demonstrate preservation of first and second order coherence of the photons in the conversion process. Based on this we infer the coherence function of the two-photon state and compare it with the actual measured one. This measurement demonstrates preservation of time-energy entanglement of the pair. With 88 % visibility we violate a Bell inequality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide

Matthias Bock, Andreas Lenhard, Christopher Chunnilall, and Christoph Becher
Opt. Express 24(21) 23992-24001 (2016)

Efficient single-spatial-mode periodically-poled KTiOPO4 waveguide source for high-dimensional entanglement-based quantum key distribution

Tian Zhong, Franco N. C. Wong, Alessandro Restelli, and Joshua C. Bienfang
Opt. Express 20(24) 26868-26877 (2012)

Engineering of near-IR photon pairs to be factorable in space-time and entangled in polarization

Kevin Zielnicki, Karina Garay-Palmett, Radhika Dirks, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 23(6) 7894-7907 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  2. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  3. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
    [Crossref] [PubMed]
  4. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [Crossref]
  5. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
    [Crossref] [PubMed]
  6. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref] [PubMed]
  7. B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
    [Crossref]
  8. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
    [Crossref] [PubMed]
  9. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref] [PubMed]
  10. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
    [Crossref]
  11. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
    [Crossref]
  12. H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
    [Crossref]
  13. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref] [PubMed]
  14. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
    [Crossref]
  15. B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
    [Crossref] [PubMed]
  16. P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. de Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 31019–1024 (2016).
    [Crossref]
  17. R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
    [Crossref]
  18. P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
    [Crossref]
  19. N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
    [Crossref]
  20. J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
    [Crossref]
  21. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
    [Crossref] [PubMed]
  22. C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
    [Crossref] [PubMed]
  23. B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
    [Crossref] [PubMed]
  24. C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
    [Crossref]
  25. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
    [Crossref] [PubMed]
  26. M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
    [Crossref] [PubMed]
  27. D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
    [Crossref]
  28. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
    [Crossref] [PubMed]
  29. Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
    [Crossref] [PubMed]
  30. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
    [Crossref] [PubMed]
  31. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref] [PubMed]
  32. W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
    [Crossref]
  33. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
    [Crossref] [PubMed]
  34. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
    [Crossref]
  35. N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
    [Crossref]
  36. N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
    [Crossref]
  37. J. D. Franson, “Violations of a simple inequality for classical fields,” Phys. Rev. Lett. 67, 290–293 (1991).
    [Crossref] [PubMed]
  38. Z. Y. J. Ou, Multi-Photon Quantum Interference (Springer Science+Business Media, 2007).
  39. A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
    [Crossref]
  40. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
    [Crossref]
  41. C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
    [Crossref]

2017 (1)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

2016 (4)

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. de Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 31019–1024 (2016).
[Crossref]

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
[Crossref]

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

2015 (3)

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

2014 (3)

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

2013 (4)

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

2012 (6)

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

2011 (4)

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[Crossref] [PubMed]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

2010 (2)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

2009 (2)

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
[Crossref]

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

2007 (2)

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

2005 (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

2004 (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

2001 (2)

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

1999 (1)

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1991 (1)

J. D. Franson, “Violations of a simple inequality for classical fields,” Phys. Rev. Lett. 67, 290–293 (1991).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Afzelius, M.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

Agha, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Albrecht, B.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. de Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 31019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Almendros, M.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Arend, C.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Ates, S.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Badolato, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Barreiro, J. T.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Becher, C.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[Crossref] [PubMed]

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Becker, J. N.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Blatt, R.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Bock, M.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

Brandl, M. F.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Brandstätter, B.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Brito, J.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

Bussieres, F.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

Casabone, B.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Christ, A.

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Chwalla, M.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Clark, S. M.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

Clausen, C.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

Cristiani, M.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

Crocker, C.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

de Riedmatten, H.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. de Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 31019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

Debnath, S.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

Duan, L.-M.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Dubin, F.

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Eich, P.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

Englund, D.

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

Eschner, J.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
[Crossref]

Farrera, P.

P. Farrera, N. Maring, B. Albrecht, G. Heinze, and H. de Riedmatten, “Nonclassical correlations between a C-band telecom photon and a stored spin-wave,” Optica 31019–1024 (2016).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Fedrizzi, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

Fernandez-Gonzalvo, X.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Franson, J. D.

J. D. Franson, “Violations of a simple inequality for classical fields,” Phys. Rev. Lett. 67, 290–293 (1991).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Friebe, K.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

Ghosh, J.

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Gisin, N.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Greve, K. De

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Gulinatti, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Haase, A.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
[Crossref]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Heinze, G.

Hennrich, M.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Höfling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Hu, E.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Hucul, D.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

Huwer, J.

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Ikuta, R.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Imamoglu, A.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Imoto, N.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Inlek, I. V.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

Jetter, M.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kambs, B.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Kiraz, A.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Koashi, M.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Kobayashi, T.

Kucera, S.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

Kurz, C.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Lenhard, A.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[Crossref] [PubMed]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Luo, K.-H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Maring, N.

Martinez, E.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Matsukevich, D. N.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

Matsuki, K.

Maunz, P.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Michler, P.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Miki, S.

Mitchell, M. W.

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
[Crossref]

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

Moehring, D. L.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

Monroe, C.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

Monz, T.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Mower, J.

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

Mukai, T.

Müller, P.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Nebendahl, V.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Nigg, D.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Northup, T. E.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Olmschenk, S.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

Ou, Z. Y. J.

Z. Y. J. Ou, Multi-Photon Quantum Interference (Springer Science+Business Media, 2007).

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Petroff, P. M.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Piro, N.

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “A tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55 (2009).
[Crossref]

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Portalupi, S. L.

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

Quint, S.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Rakher, M. T.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Ramelow, S.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Rech, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

Rohde, F.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Roos, C. F.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Rütz, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

Schindler, P.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Schmidt, P. O.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Schoenfeld, W. V.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Schuck, C.

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Schug, M.

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Schüppert, K.

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

Shapiro, J. H.

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

Silberhorn, C.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Simon, C.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Srinivasan, K.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Stute, A.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

Suche, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Terai, H.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Usmani, I.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

Vittorini, G.

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

Wang, S. X.

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

Wong, F. N. C.

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

Yamamoto, T.

R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 31279–1284 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Yamashita, T.

Younge, K. C.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[Crossref] [PubMed]

Zbinden, H.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Zeilinger, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

Zhang, L.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Zhang, Z.

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

N. Piro, A. Haase, M. W. Mitchell, and J. Eschner, “An entangled photon source for resonant single-photon-single-atom interaction,” J. Phys. B: At. Mol. Opt. Phys. 42, 114002 (2009).
[Crossref]

Nat. Commun. (3)

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, and J. Eschner, “Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer,” Nat. Commun. 5, 5527 (2014).
[Crossref] [PubMed]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. de Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[Crossref]

Nat. Phys. (2)

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2011).
[Crossref]

N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, and J. Eschner, “Heralded single-photon absorption by a single atom,” Nat. Phys. 7, 17–20 (2010).
[Crossref]

Nature (6)

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485, 482–485 (2012).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–425 (2012).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Nature Phys. (1)

D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Phys. 11, 37–42 (2015).
[Crossref]

New J. Phys. (3)

J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, and J. Eschner, “Photon entanglement detection by a single atom,” New J. Phys. 15, 025033 (2013).
[Crossref]

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt, “A quantum information processor with trapped ions,” New J. Phys. 15, 123012 (2013).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163 (2004).
[Crossref]

Opt. Express (2)

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
[Crossref] [PubMed]

B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, “Low-noise quantum frequency down-conversion of indistinguishable photons,” Opt. Express 24, 122250 (2016).
[Crossref]

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (5)

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92, 063827 (2015).
[Crossref]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A 85, 013845 (2012).
[Crossref]

C. Kurz, P. Eich, M. Schug, P. Müller, and J. Eschner, “Programmable atom-photon quantum interface,” Phys. Rev. A 93, 062348 (2016).
[Crossref]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Phys. Rev. Applied (1)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Applied 7, 024021 (2017).
[Crossref]

Phys. Rev. B (1)

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. Zhang, and E. Hu, “Nonclassical radiation from a single self assembled InAs quantum dot,” Phys. Rev. B 63, 121312 (2001).
[Crossref]

Phys. Rev. Lett. (11)

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

M. Schug, J. Huwer, C. Kurz, P. Müller, and J. Eschner, “Heralded photonic interaction between distant single ions,” Phys. Rev. Lett. 110, 213603 (2013).
[Crossref] [PubMed]

B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R. Blatt, and T. E. Northup, “Enhanced quantum interface with collective ion-cavity coupling,” Phys. Rev. Lett. 114, 023602 (2015).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

J. D. Franson, “Violations of a simple inequality for classical fields,” Phys. Rev. Lett. 67, 290–293 (1991).
[Crossref] [PubMed]

Other (1)

Z. Y. J. Ou, Multi-Photon Quantum Interference (Springer Science+Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup with SPDC source, frequency converter and interferometers for Franson interference. PBS: polarizing beam splitter; TTM: time tagging module; PPLN WG: periodically poled lithium niobate waveguide; BPF: band pass filters; PPKTP: periodically poled KTP nonlinear crystal; SMF: single mode fiber; MI: Michelson interferometer; MZI: Mach-Zehnder interferometer; QFC: Quantum Frequency Converter. (a) Detailed setup for the Franson experiment (see Sec. 4). (b)–(d) Sketches illustrating the configurations for first order coherence measurements of the 854 nm photons (b) and the converted photons (c), see Sec. 3 and the second order coherence (d), see Sec. 5.

Fig. 2
Fig. 2

(a) Measured visibility of the 854 nm single photons as a function of interferometer delay (black stars). The red solid line shows the calculation derived from the spectrum, shown in the inset. (b) Interference fringes (raw count rate) at positions with maximum and minimum visibility.

Fig. 3
Fig. 3

(a) Measured visibility function of the converted 1310 nm telecom single photons (black stars). The solid line shows a calculation, as explained in the text. (b) Interference fringes (raw count rate) at positions with maximum and minimum visibility.

Fig. 4
Fig. 4

Two-photon coherence measurement. (a) Main figure: measured interference fringe visibility (black diamonds) vs. delay imbalance between the interferometers. The red solid line shows the expected curve calculated from the first-order coherence functions and scaled by the maximum visiblity of the apparatus. The horizontal line at a visibility of 71 % indicates the upper boundary given by the Bell inequality, and the line at 50 % indicates the classical boundary. The inset shows a long-term average correlation function between the two detectors. The gray shaded area indicates the indistinguishable path combinations for which the visibility is determined. The coincidence data are background-corrected. (b) Interference fringes (raw coincidence rate) at positions with maximum and minimum visibility.

Fig. 5
Fig. 5

Photon-photon correlation measurements. a) Measured g(2)(0)-values vs. heralding rate. Red data points are measured at 854 nm without QFC. Black data include QFC to 1310 nm. Error bars are calculated including N-noise of the coincidences. The solid lines result from the model based on the SBR, as described in the text. b) Signal-to-background ratio, SBR, vs. heralding rate, for a time bin of Δt = 1.5 ns; the colors correspond to (a). The lines are calculations as explained in the text.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

τ c = d τ | g ( 1 ) ( τ ) | = d τ V ( τ ) / V max
Δ ν = d ν I ( ν ) / max ( I ( ν ) )
R A B ( 2 ) 1 + F ( τ A τ B ) | γ p ( τ A + τ B 2 ) | cos [ ω A τ A + ω B τ B + ϕ 0 ]
F ( Δ τ ) = g A ( t ) g B * ( t + Δ τ ) g A ( t ) g B * ( t ) ,
SBR = 1 Δ t ( a R Her + b )
g ( 2 ) ( 0 ) = 1 ( SBR SBR + 1 ) 2
B G = S 1 S 2 Δ t
C = P η     1 η 2
SBR = C B G = C T B G T
SBR = 1 Δ t ( a R 1 + b )
a = 1 + q 2 η 1 and b = 1 + q 1 η 2 W 2 .
a = 6.78 , b = 1.67 10 6 s 1
a = 19.1 , b ~ 0

Metrics