Abstract

M × N wavelength selective switch (WSS) is a core component to address wavelength conflict in an optical switching node. In this paper, we design and experimentally demonstrate a performance enhanced 3 × 4 tunable bandwidth WSS (TBWSS) with tunable attenuation across the full C-band, and using compact spatial light paths. Wavelength channels from any input optical fiber port can be switched into any output optical fiber port with best insertion loss (IL) of 8.4 dB and worst IL of 12.5 dB. The attenuation tuning range can reach up to 35 dB. Compared to previous demonstrations, more than 2 dB IL improvement is achieved. Based on the proposed compact spatial light paths, the number of input and output ports can be easily extended to 10 and 20, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-VLSI-based N × M wavelength selective switch

Feng Xiao and Kamal Alameh
Opt. Express 21(15) 18160-18169 (2013)

Survey of Photonic Switching Architectures and Technologies in Support of Spatially and Spectrally Flexible Optical Networking [Invited]

Dan M. Marom, Paul D. Colbourne, Antonio D’Errico, Nicolas K. Fontaine, Yuichiro Ikuma, Roberto Proietti, Liangjia Zong, José M. Rivas-Moscoso, and Ioannis Tomkos
J. Opt. Commun. Netw. 9(1) 1-26 (2017)

Low-Cost CDC ROADM Architecture Based on Stacked Wavelength Selective Switches

Haining Yang, Brian Robertson, Peter Wilkinson, and Daping Chu
J. Opt. Commun. Netw. 9(5) 375-384 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. 26(9), 1104–1118 (2008).
    [Crossref]
  2. P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conference (OSA, 2008), paper NWE2.
  3. T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
    [Crossref]
  4. S. L. Woodward, M. D. Feuer, P. Palacharla, X. Wang, I. Kim, and D. Bihon, “Intra-node contention in a dynamic, colorless, non-directional ROADM,” in Optical Fiber Communication Conference (OSA, 2010), paper PDPC8.
  5. R. Jensen, “Optical switch architectures for emerging colorless/derictionless/contentionless ROADM networks,” in Optical Fiber Communication Conference (OSA, 2011), paper OThR3.
  6. T. Kawai, T. Kobayashi, T. Inui, T. Komukai, T. Kataoka, M. Fukutoku, M. Tomizawa, Y. Ishii, E. Hashimoto, Y. Kawajiri, and T. Watanabe, “Multi-degree ROADM based on massive port count WSS with integrated colorless ports,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuD2.
  7. S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks - a blocking analysis,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuI6.
  8. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuM3.
  9. H. Yang, B. Robertson, and D. Chu, “Transient crosstalk in LCOS based WSS and a method to suppress the crosstalk levels,” in Optical Fiber Communication Conference (OSA, 2011), paper OW1C.3.
  10. K. Sorimoto, K. Tanizawa, H. Uetsuka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, and H. Tsuda, “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express 21(14), 17131–17149 (2013).
    [Crossref] [PubMed]
  11. H. Yang, B. Robertson, D. Yu, Z. Zhang, and D. P. Chu, “Origin of transient crosstalk and its reduction in phase-only LCOS wavelength selective switches,” J. Lightwave Technol. 31(23), 3822–3829 (2013).
    [Crossref]
  12. B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, and D. P. Chu, “Demonstration of multi-casting in a 1×9 LCOS wavelength selective switch,” J. Lightwave Technol. 32(3), 402–410 (2014).
    [Crossref]
  13. Y. Sakurai, M. Kawasugi, Y. Hotta, S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-based 4×4 wavelength cross-connect switch for flexible channel management in ROADMs,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuM4.
  14. W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Optical Fiber Communication Conference (OSA, 2012), paper NW3F.5.
  15. Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8×24 wavelength selective switch for low-loss transponder aggregator,” in Optical Fiber Communication Conference (OSA, 2011), paper Th5A.4.
  16. N. K. Fontaine, R. Ryf, and D. T. Neilson, “N×M wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference (OSA, 2011), paper PDP5B.2.
  17. F. Xiao and K. Alameh, “Opto-VLSI-based N × M wavelength selective switch,” Opt. Express 21(15), 18160–18169 (2013).
    [Crossref] [PubMed]
  18. J. B. Schroeder, J. A. Carpenter, S. Frisken, M. A. Roelens, and B. J. Eggleton, “6 port 3×3 wavelength selective cross-connect by software-only reprogramming of a 1×N wavelength selective switch,” in Optical Fiber Communication Conference (OSA, 2011), paper W2A.15.
  19. L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
    [Crossref]
  20. L. J. Zong, H. Zhao, Y. F. Yan, and Z. Y. Feng, “Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC,” J. Opt. Commun. Netw. 8(7), A141–A151 (2016).
    [Crossref]
  21. D. M. Marom, P. D. Colbourne, A. D’Errico, N. K. Fontaine, Y. Ikuma, R. Proietti, L. Zong, J. M. Rivas-Moscoso, and I. Tomkos, “Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking,” J. Opt. Commun. Netw. 9(1), 1–26 (2017).
    [Crossref]

2017 (1)

2016 (1)

2015 (1)

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

2014 (1)

2013 (3)

2010 (1)

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

2008 (1)

Alameh, K.

Berthold, J.

Blair, L.

Chu, D. P.

Colbourne, P. D.

Collings, N.

Crossland, W. A.

D’Errico, A.

Feng, Z. Y.

L. J. Zong, H. Zhao, Y. F. Yan, and Z. Y. Feng, “Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC,” J. Opt. Commun. Netw. 8(7), A141–A151 (2016).
[Crossref]

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

Fontaine, N. K.

Hasama, T.

Ikuma, Y.

Ishikawa, H.

Jeziorska-Chapman, A. M.

Kawashima, H.

Lee, S.

Liu, J.

Marom, D. M.

Moore, J. R.

Mori, M.

Pivnenko, M.

Proietti, R.

Redmond, M. M.

Rivas-Moscoso, J. M.

Robertson, B.

Saleh, A. A. M.

Simmons, J. M.

Sorimoto, K.

Strasser, T.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

Tanizawa, K.

Tomkos, I.

Tsuda, H.

Uetsuka, H.

Wagener, J.

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

White, I. H.

Wonfor, A.

Xiao, F.

Yan, Y. F.

L. J. Zong, H. Zhao, Y. F. Yan, and Z. Y. Feng, “Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC,” J. Opt. Commun. Netw. 8(7), A141–A151 (2016).
[Crossref]

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

Yang, H.

Yu, D.

Zhang, Z.

Zhao, H.

L. J. Zong, H. Zhao, Y. F. Yan, and Z. Y. Feng, “Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC,” J. Opt. Commun. Netw. 8(7), A141–A151 (2016).
[Crossref]

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

Zong, L.

Zong, L. J.

L. J. Zong, H. Zhao, Y. F. Yan, and Z. Y. Feng, “Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC,” J. Opt. Commun. Netw. 8(7), A141–A151 (2016).
[Crossref]

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Strasser and J. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1150–1157 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. J. Zong, H. Zhao, Z. Y. Feng, and Y. F. Yan, “8×8 Flexible wavelength cross-connect for CDC ROADM application,” IEEE Photonics Technol. Lett. 27, 2603–2606 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

Opt. Express (2)

Other (12)

J. B. Schroeder, J. A. Carpenter, S. Frisken, M. A. Roelens, and B. J. Eggleton, “6 port 3×3 wavelength selective cross-connect by software-only reprogramming of a 1×N wavelength selective switch,” in Optical Fiber Communication Conference (OSA, 2011), paper W2A.15.

P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conference (OSA, 2008), paper NWE2.

Y. Sakurai, M. Kawasugi, Y. Hotta, S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-based 4×4 wavelength cross-connect switch for flexible channel management in ROADMs,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuM4.

W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” in Optical Fiber Communication Conference (OSA, 2012), paper NW3F.5.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “8×24 wavelength selective switch for low-loss transponder aggregator,” in Optical Fiber Communication Conference (OSA, 2011), paper Th5A.4.

N. K. Fontaine, R. Ryf, and D. T. Neilson, “N×M wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference (OSA, 2011), paper PDP5B.2.

S. L. Woodward, M. D. Feuer, P. Palacharla, X. Wang, I. Kim, and D. Bihon, “Intra-node contention in a dynamic, colorless, non-directional ROADM,” in Optical Fiber Communication Conference (OSA, 2010), paper PDPC8.

R. Jensen, “Optical switch architectures for emerging colorless/derictionless/contentionless ROADM networks,” in Optical Fiber Communication Conference (OSA, 2011), paper OThR3.

T. Kawai, T. Kobayashi, T. Inui, T. Komukai, T. Kataoka, M. Fukutoku, M. Tomizawa, Y. Ishii, E. Hashimoto, Y. Kawajiri, and T. Watanabe, “Multi-degree ROADM based on massive port count WSS with integrated colorless ports,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuD2.

S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks - a blocking analysis,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuI6.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference (OSA, 2011), paper OTuM3.

H. Yang, B. Robertson, and D. Chu, “Transient crosstalk in LCOS based WSS and a method to suppress the crosstalk levels,” in Optical Fiber Communication Conference (OSA, 2011), paper OW1C.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagrams of optical path, (a) through the wavelength direction (y-axis), (b) through the switching direction (x-axis).
Fig. 2
Fig. 2 Photograph of the inner structure of the proposed 3 × 4 TBWSS.
Fig. 3
Fig. 3 Schematic diagram of distribution for LCOS chips and switching lens.
Fig. 4
Fig. 4 Measured values of IL as a function of wavelength from 1530 nm to 1570 nm.
Fig. 5
Fig. 5 (a) The spectrum of minimum 3dB bandwidth; (b) Tunable bandwidth step; (c) Range of tunable bandwidth; (d) Function of tunable attenuation.
Fig. 6
Fig. 6 Switching function with wavelength range from 1530 nm to 1570 nm.
Fig. 7
Fig. 7 Switching function with wavelength range from 1530 nm to 1570 nm with output attenuation.
Fig. 8
Fig. 8 Optical spectra of the three different wavelength signals for the three input ports.
Fig. 9
Fig. 9 Performance of three different wavelengths inputs, one output. Input port1, port2 and port3 signals were all switched to (a) output port1; (b) output port2; (c) output port3; and (d) output port4.
Fig. 10
Fig. 10 Performance of three different wavelengths inputs, three outputs. (a) Input port1, port2 and port3 signals were switched to the corresponding output port1, port2 and port3. (b) Input port1, port2 and port3 signals were switched to the corresponding output port4, port1 and port2.
Fig. 11
Fig. 11 Performance of three different wavelengths for input three output with attenuation.
Fig. 12
Fig. 12 Optical spectra of the same wavelength signal for the three input ports.
Fig. 13
Fig. 13 Performance of switching three input to three output ports with the same input wavelength. (a) Input port1, port2 and port3 signals were switched to the corresponding output port1, port2 and port3; (b) Input port1, port2 and port3 signals were switched to the corresponding output port2, port4 and port1.

Tables (1)

Tables Icon

Table 1 Components of the Designed 3 × 4 TBWSS

Metrics