Abstract

We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference. Holographic reconstructions after the application of the method show a considerable improvement compared to standard reconstructions exclusively based on Fourier transform phase retrieval.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz holography in reflection using a high resolution microbolometer array

Peter Zolliker and Erwin Hack
Opt. Express 23(9) 10957-10967 (2015)

THz coherent lensless imaging

Lorenzo Valzania, Yuchen Zhao, Lu Rong, Dayong Wang, Marc Georges, Erwin Hack, and Peter Zolliker
Appl. Opt. 58(34) G256-G275 (2019)

Watermarking of three-dimensional objects by digital holography

Sherif Kishk and Bahram Javidi
Opt. Lett. 28(3) 167-169 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2013).
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  3. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science & Business Media, 2009).
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  5. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
    [Crossref]
  6. O. Morikawa, K. Yamamoto, K. Kurihara, M. Tani, F. Kuwashima, and M. Hangyo, “Sub-terahertz imaging using time-domain signals obtained with photoconductive spiral antennas,” J. Opt. Soc. Am. B 33(9), 1940–1948 (2016).
    [Crossref]
  7. S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
    [Crossref] [PubMed]
  8. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
    [Crossref]
  9. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  10. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
    [Crossref] [PubMed]
  11. P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
    [Crossref] [PubMed]
  12. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
    [Crossref] [PubMed]
  13. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
    [Crossref] [PubMed]
  14. P. K. Rastogi and E. Hack, Optical Methods for Solid Mechanics: A Full-Field Approach (John Wiley & Sons, 2012).
  15. G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Estimation of multiple phases from a single fringe pattern in digital holographic interferometry,” Opt. Express 20(2), 1281–1291 (2012).
    [Crossref] [PubMed]
  16. R. Kulkarni and P. Rastogi, “Simultaneous measurement of in-plane and out-of-plane displacements using pseudo-Wigner-Hough transform,” Opt. Express 22(7), 8703–8711 (2014).
    [Crossref] [PubMed]
  17. R. Kulkarni and P. Rastogi, “Digital holographic moiré for the direct and simultaneous estimation of strain and slope fields,” Opt. Express 22(19), 23192–23201 (2014).
    [Crossref] [PubMed]
  18. R. Kulkarni and P. Rastogi, “Three-dimensional displacement measurement from phase signals embedded in a frame in digital holographic interferometry,” Appl. Opt. 54(11), 3393–3397 (2015).
    [Crossref] [PubMed]
  19. G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Simultaneous multidimensional deformation measurements using digital holographic moiré,” Appl. Opt. 50(21), 4189–4197 (2011).
    [Crossref] [PubMed]
  20. R. Kulkarni and P. Rastogi, “Iterative signal separation based multiple phase estimation in digital holographic interferometry,” Opt. Express 23(20), 26842–26852 (2015).
    [Crossref] [PubMed]
  21. Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.
  22. Z. Sunderland and K. Patorski, “Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges,” in XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015)(International Society for Optics and Photonics, 2015), pp. 966201–966207.
  23. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena (Springer, 1975), pp. 9–75.
  24. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  25. P. Rastogi and E. Hack, Phase Estimation in Optical Interferometry (CRC Press, 2014).
  26. E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
    [Crossref] [PubMed]
  27. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [Crossref] [PubMed]

2016 (2)

O. Morikawa, K. Yamamoto, K. Kurihara, M. Tani, F. Kuwashima, and M. Hangyo, “Sub-terahertz imaging using time-domain signals obtained with photoconductive spiral antennas,” J. Opt. Soc. Am. B 33(9), 1940–1948 (2016).
[Crossref]

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (3)

2013 (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

2012 (1)

2011 (3)

2008 (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

2007 (2)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2003 (1)

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

Abbott, D.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

Bajwa, N.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Bartalini, S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Bennett, D. B.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Brown, E. R.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Cicchi, R.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Consolino, L.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Culjat, M. O.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

De Natale, P.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Everitt, H. O.

Ferguson, B.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

Gäumann, G.

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

Gorthi, S. S.

Gregory, D. A.

Grundfest, W. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Hack, E.

Hangyo, M.

Hauri, C. P.

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

Heimbeck, M. S.

Hubschman, J.-P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Kealey, C. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Kim, M. K.

Kulkarni, R.

Kurihara, K.

Kuwashima, F.

Laman, N.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Locatelli, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Morikawa, O.

Patorski, K.

Z. Sunderland and K. Patorski, “Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges,” in XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015)(International Society for Optics and Photonics, 2015), pp. 966201–966207.

Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.

Pavone, F.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Pokorski, K.

Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.

Rajshekhar, G.

Rastogi, P.

Ravaro, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Redo-Sanchez, A.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Schulkin, B.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Shalaby, M.

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

Singh, R. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Stojadinovic, A.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Sun, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Sunderland, Z.

Z. Sunderland and K. Patorski, “Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges,” in XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015)(International Society for Optics and Photonics, 2015), pp. 966201–966207.

Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.

Tani, M.

Taylor, Z. D.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Tewari, P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Tongue, T.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Valzania, L.

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

Vitiello, M. S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Wang, S.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

Wang, X.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Wielgus, M.

Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.

Yamamoto, K.

Zhang, X.-C.

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Zhou, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Zolliker, P.

Appl. Opt. (2)

IEEE Trans. Terahertz Sci. Technol. (1)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

J. Biol. Phys. (1)

S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2-3), 247–256 (2003).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (1)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34(9), 500–518 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (7)

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Sci. Rep. (1)

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5(1), 13566 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors (Basel) 16(2), 221 (2016).
[Crossref] [PubMed]

Strain (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44(5), 380–385 (2008).
[Crossref]

Other (9)

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science & Business Media, 2009).

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2013).

Z. Sunderland, K. Patorski, M. Wielgus, and K. Pokorski, “Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes,” in XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics(International Society for Optics and Photonics, 2014), pp. 944111–944119.

Z. Sunderland and K. Patorski, “Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges,” in XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015)(International Society for Optics and Photonics, 2015), pp. 966201–966207.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena (Springer, 1975), pp. 9–75.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

P. Rastogi and E. Hack, Phase Estimation in Optical Interferometry (CRC Press, 2014).

P. K. Rastogi and E. Hack, Optical Methods for Solid Mechanics: A Full-Field Approach (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a typical off-axis digital holography setup. (b) Insight into the three-beam interference arising from scattering from the object and the covering material. See the main text for an explanation of the symbols.
Fig. 2
Fig. 2 Simulation results. Amplitude distribution of (a) the Siemens Star, (b) the reference beam, and (c) the contribution A. Their interference pattern is shown in (d), along with its corresponding Fourier spectrum (e). (f) Interference pattern IOA and (g) its spectrum. (h) Interference pattern IRA and (i) its spectrum. (j) Intensity distribution of the subtraction performed to retrieve the object’s complex beam (Eq. (5)) and (k) its spectrum. fy is the spatial frequency along the y axis. All the spectra are displayed with a common scale.
Fig. 3
Fig. 3 Simulation results. (a) Retrieved amplitude and (b) phase distributions of the hidden object at the detector plane. (c) Reconstructed amplitude and (d) phase distributions after back-propagation to the position of the object.
Fig. 4
Fig. 4 Top row, experimental interference patterns: (a) IROA, (b) IOA, (c) IRA. Bottom row, corresponding simulated patterns: (d) IROA, (e) IOA, (f) IRA.
Fig. 5
Fig. 5 Reconstructions of the Siemens Star. Amplitude (a), (d), (g), wrapped phase (b), (e), (h), and profile (c), (f). (a), (b), (c): the Siemens Star was not hidden; (d), (e), (f): the Siemens Star was hidden behind a Teflon plate and the signal separation was applied to eliminate the contribution from the plate; (g), (h): the Siemens Star was hidden behind the Teflon plate and a standard phase retrieval algorithm was applied. As in Fig. 3, the reconstructed wrapped phase distributions were arbitrarily set to zero where the amplitude is within the noise level. In the plots (c) and (f), black symbols represent experimental data along the cross-sections highlighted in (b) and (e), while red lines show a parabolic fit. (i): colorbar for wrapped phase reconstructions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ROA | E ˜ R + E ˜ O + E ˜ A | 2 .
I ROA E R 2 + E O 2 + E A 2 +2 E R E O cos( ϕ R ϕ O )+2 E R E A cos( ϕ R ϕ A )+2 E O E A cos( ϕ O ϕ A ).
I OA E O 2 + E A 2 +2 E O E A cos( ϕ O ϕ A ),
I RA E R 2 + E A 2 +2 E R E A cos( ϕ R ϕ A ).
I ROA I RA I OA E A 2 +2 E R E O cos( ϕ R ϕ O ).

Metrics