Abstract

We characterized the dual wavelength operation of a distributed Bragg reflector (DBR) quantum cascade laser (QCL) operating at 4.5 μm using two independent optical frequency discriminators. The QCL emits up to 150 mW fairly evenly distributed between two adjacent Fabry-Perot modes separated by ≈11.6 GHz. We show a strong correlation between the instantaneous optical frequencies of the two lasing modes, characterized by a Pearson correlation coefficient of 0.96. As a result, we stabilized one laser mode of the QCL to a N2O transition using a side-of-fringe locking technique, reducing its linewidth by a factor 6.2, from 406 kHz in free-running operation down to 65 kHz (at 1-ms observation time), and observed a simultaneous reduction of the frequency fluctuations of the second mode by a similar amount, resulting in a linewidth narrowing by a factor 5.4, from 380 kHz to 70 kHz. This proof-of-principle demonstration was performed with a standard DBR QCL that was not deliberately designed for dual-mode operation. These promising results open the door to the fabrication of more flexible dual-mode QCLs with the use of specifically designed gratings in the future.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb

Joshua R. Freeman, Lalitha Ponnampalam, Haymen Shams, Reshma A. Mohandas, Cyril C. Renaud, Paul Dean, Lianhe Li, A. Giles Davies, Alwyn J. Seeds, and Edmund H. Linfield
Optica 4(9) 1059-1064 (2017)

Intrinsic linewidth of quantum cascade laser frequency combs

Francesco Cappelli, Gustavo Villares, Sabine Riedi, and Jérôme Faist
Optica 2(10) 836-840 (2015)

Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity

M. Renaudat St-Jean, M.I. Amanti, A. Bismuto, M. Beck, J. Faist, and C. Sirtori
Opt. Express 25(3) 1847-1855 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [Crossref]
  2. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express 20, 3890–3897 (2012).
    [Crossref] [PubMed]
  3. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
    [Crossref]
  4. P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
    [Crossref]
  5. J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
    [Crossref]
  6. M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
    [Crossref]
  7. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref] [PubMed]
  8. F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
    [Crossref]
  9. S. Ginestar, “Fabrication and characterisation of a dual-mode DFB laser for radio over fibre applications,” Ph.D. thesis, Université des Sciences et Technologie de Lille (2009).
  10. S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
    [Crossref]
  11. R. Martini and E. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep. 2, 279–292 (2005).
    [Crossref]
  12. R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
    [Crossref] [PubMed]
  13. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
    [Crossref]
  14. G. Carpintero, E. Rouvalis, K. Lawniczuk, M. Fice, C. C. Renaud, X. J. Leijtens, E. A. Bente, M. Chitoui, F. Van Dijk, and A. J. Seeds, “95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser,” Opt. Lett. 37, 3657–3659 (2012).
    [Crossref] [PubMed]
  15. A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
    [Crossref]
  16. G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
    [Crossref]
  17. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
    [Crossref] [PubMed]
  18. S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
    [Crossref]
  19. O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
    [Crossref]
  20. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
    [Crossref]
  21. A. Sadeghi, P. Q. Liu, X. Wang, J. Fan, M. Troccoli, and C. F. Gmachl, “Wavelength selection and spectral narrowing of distributed Bragg reflector quantum cascade lasers up to peak optical power,” Opt. Express 21, 31012–31018 (2013).
    [Crossref]
  22. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2016).
  23. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  24. A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
    [Crossref] [PubMed]
  25. P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoustics AU-15, 70–73 (1967).
    [Crossref]
  26. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
    [Crossref] [PubMed]
  27. F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
    [Crossref]
  28. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
    [Crossref]
  29. R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
    [Crossref]

2016 (3)

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

2015 (3)

F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
[Crossref]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

2014 (2)

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

2013 (2)

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

A. Sadeghi, P. Q. Liu, X. Wang, J. Fan, M. Troccoli, and C. F. Gmachl, “Wavelength selection and spectral narrowing of distributed Bragg reflector quantum cascade lasers up to peak optical power,” Opt. Express 21, 31012–31018 (2013).
[Crossref]

2012 (3)

2011 (2)

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[Crossref] [PubMed]

2010 (2)

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
[Crossref] [PubMed]

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

2009 (3)

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

2007 (1)

S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
[Crossref]

2006 (2)

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

2005 (1)

R. Martini and E. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep. 2, 279–292 (2005).
[Crossref]

2004 (1)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

1967 (1)

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoustics AU-15, 70–73 (1967).
[Crossref]

Amanti, M. I.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

Andres, M. V.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Baranov, A. N.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

Barbieri, S.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

Bartalini, S.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Beck, M.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

Bente, E. A.

Bethea, C. G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

Bidaux, Y.

Bismuto, A.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

Blanchard, R.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Blaser, S.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

Bonetti, Y.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

Bonzon, C.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Borri, S.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Calvar, A.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

Campo, G.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Cancio, P.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Capasso, F.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Cappelli, F.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
[Crossref]

Carpintero, G.

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

Chan, S.-C.

S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

Chen, G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

Chitoui, M.

Cho, A. Y.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Cruz, J. L.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

Dal Negro, L.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

De Natale, P.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

Di Domenico, G.

Di Francesco, J.

Diaz, R.

Diehl, L.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Dudek, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

Dupuis, R. D.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Emmenegger, L.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Faist, J.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[Crossref] [PubMed]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Fan, J.

Fice, M.

Fischer, M.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

Forchel, A.

Friedl, J.

Fuchs, P.

Galli, I.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Ginestar, S.

S. Ginestar, “Fabrication and characterisation of a dual-mode DFB laser for radio over fibre applications,” Ph.D. thesis, Université des Sciences et Technologie de Lille (2009).

Gini, E.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

Giusfredi, G.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Gmachl, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Gmachl, C. F.

Grant, P. D.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

Gresch, T.

Hinkov, B.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Höfling, S.

Hofstetter, D.

Huang, Y.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Hundt, P.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

Hwang, S.-K.

S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
[Crossref]

Jágerská, J.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Jouy, P.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Kamp, M.

Koeth, J.

Lawniczuk, K.

Leijtens, X. J.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

Liu, J.-M.

S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31, 3600–3602 (2006).
[Crossref] [PubMed]

Liu, P. Q.

Looser, H.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Mangold, M.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Marti, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Martini, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

R. Martini and E. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep. 2, 279–292 (2005).
[Crossref]

Maulini, R.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

Mazzotti, D.

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Menzel, S.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Muller, A.

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2016).

Palaci, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Peretti, R.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

Perez-Millan, P.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Pflügl, C.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Renaud, C. C.

Renaudat St-Jean, M.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

Riedi, S.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
[Crossref]

Rochat, M.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

Rouvalis, E.

Ryou, J.-H.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Sadeghi, A.

Schilt, S.

Seeds, A. J.

Sirtori, C.

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

Sudmeyer, T.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

Süess, M.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

Tardy, C.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

Teissier, R.

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

Terazzi, R.

A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Opt. Express 24, 10694–10699 (2016).
[Crossref] [PubMed]

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

Thomann, P.

Tombez, L.

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett. 36, 3109–3111 (2011).
[Crossref] [PubMed]

Troccoli, M.

Tuzson, B.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Van Dijk, F.

Villanueva, G. E.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

Villares, G.

F. Cappelli, G. Villares, S. Riedi, and J. Faist, “Intrinsic linewidth of quantum cascade laser frequency combs,” Optica 2, 836–840 (2015).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Wang, C.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Wang, X.

Welch, P.

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoustics AU-15, 70–73 (1967).
[Crossref]

Whittaker, E.

R. Martini and E. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep. 2, 279–292 (2005).
[Crossref]

Wittmann, A.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

Wolf, J.

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Worschech, L.

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Schilt, L. Tombez, C. Tardy, A. Bismuto, S. Blaser, R. Maulini, R. Terazzi, M. Rochat, and T. Sudmeyer, “An experimental study of noise in mid-infrared quantum cascade lasers of different designs,” Appl. Phys. B 119, 189–201 (2015).
[Crossref]

Appl. Phys. Lett. (6)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[Crossref]

A. Calvar, M. I. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E. Gini, M. Beck, J. Faist, and C. Sirtori, “High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line,” Appl. Phys. Lett. 102, 181114 (2013).
[Crossref]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett. 95, 101104 (2009).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659–1661 (2004).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105, 161109 (2014).
[Crossref]

Electron. Lett. (1)

O. Cathabard, R. Teissier, J. Devenson, and A. N. Baranov, “InAs-based distributed feedback quantum cascade lasers,” Electron. Lett. 45, 1028–1030 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum-Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423 K,” IEEE Photonics Technol. Lett. 21, 814–816 (2009).
[Crossref]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation,” IEEE Photonics Technol. Lett. 18, 2587–2589 (2006).
[Crossref]

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-Wavelength DFB Erbium-Doped Fiber Laser With Tunable Wavelength Spacing,” IEEE Photonics Technol. Lett. 22, 254–256 (2010).
[Crossref]

IEEE Trans. Audio Electroacoustics (1)

P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoustics AU-15, 70–73 (1967).
[Crossref]

J. Opt. Fiber Commun. Rep. (1)

R. Martini and E. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep. 2, 279–292 (2005).
[Crossref]

Laser Photonics Rev. (1)

F. Cappelli, G. Campo, I. Galli, G. Giusfredi, S. Bartalini, D. Mazzotti, P. Cancio, S. Borri, B. Hinkov, J. Faist, and P. De Natale, “Frequency stability characterization of a quantum cascade laser frequency comb,” Laser Photonics Rev. 10, 623–630 (2016).
[Crossref]

Nat. Commun. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: Single-mode emission in multi-wavelength lasers,” New J. Phys. 13, 113023 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Photonics (1)

M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016).
[Crossref]

Phys. Simul. Optoelectron. Devices XV (1)

S.-C. Chan, S.-K. Hwang, and J.-M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Phys. Simul. Optoelectron. Devices XV 6468, 646811 (2007).
[Crossref]

Other (2)

S. Ginestar, “Fabrication and characterisation of a dual-mode DFB laser for radio over fibre applications,” Ph.D. thesis, Université des Sciences et Technologie de Lille (2009).

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Reflectivity spectrum of a DBR (calculated as described in [22]) with the locations of the Fabry-Perot modes (grey lines) separated by the cavity FSR of ≈10 GHz.

Fig. 2
Fig. 2

Left: LIV curves of the selected QCL at 20 °C. The blue area indicates the current range of a stable dual-mode operation. Right: typical corresponding dual-mode spectra measured with an FTIR spectrometer at a resolution of 0.06 cm−1.

Fig. 3
Fig. 3

Electrical beat-note of a free-running dual wavelength QCL measured between its electrodes, averaged over 100 sweeps (100 s total observation time); resolution bandwidth: 1 kHz, measured linewidth: 30 kHz.

Fig. 4
Fig. 4

Continuous tuning of the frequency spacing between the two optical modes with the laser current. Left: recorded RF spectra at various currents; right: tuning curve extracted from the peak locations.

Fig. 5
Fig. 5

Scheme of principle of the simultaneous measurement of the frequency fluctuations of the two optical modes of the QCL using two distinct frequency discriminators: the frequency noise of the first laser mode (red peak on the right) is discriminated by a gas absorption line (shown in solid blue), whereas the frequency noise of the second one (red peak on the left) is measured using an optical resonator (shown in dashed grey). The respective linewidths are not to scale for illustrative purpose.

Fig. 6
Fig. 6

Experimental workbench. M1, M2 - mirrors, L1, L2 - lenses with 1.87 mm and 100 mm focal lengths, BS - non-polarizing beam splitter, MCT 1, MCT 2 - fast optical detectors.

Fig. 7
Fig. 7

Upper left: instantaneous frequency of the same optical mode discriminated with both the gas cell (blue curve) and the optical resonator (red curve): R = 0.98. Upper right: instantaneous frequencies of the two different modes simultaneously observed with the two optical discriminators: R = 0.96. Bottom: scatter plots of the red curve versus the blue one from the corresponding upper plots visualizing the correlation.

Fig. 8
Fig. 8

Profiles of the two modes of a dual wavelength QCL measured with a tunable Fabry-Perot resonator during a piezo scan for the free-running (red) and stabilized (blue) QCL, along with a Gaussian fit (dashed black). The transmission profile of the resonance observed with the locked laser is limited by the ≈5-MHz resonance width (i.e., by the finesse) of the Fabry-Perot resonator. The optical linewidth of the QCL modes is narrower. The mode on the left was used in the stabilization. The power scale is arbitrary, but the same for both modes. The different curves have been shifted vertically for the clarity of the plots.

Fig. 9
Fig. 9

Frequency noise power spectral density (PSD) of both modes measured with the optical resonator, in the free-running (red) and stabilized (blue) cases. The dashed lines show the corresponding spectra obtained from the gas cell discriminator for cross-check, which are available only for one mode (directly-locked mode). The β-separation line used for linewidth estimation [26] is shown by the dashed line. Slight discontinuities of some curves at ≈ 100 kHz result from some limitations of digital sampling and from the fact that these curves were obtained from distinct data sets.

Metrics