Abstract

Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang
Opt. Express 27(3) 3065-3073 (2019)

Experimental investigation on the time-delay signature of chaotic output from a 1550  nm VCSEL subject to FBG feedback

Zhu-Qiang Zhong, Zheng-Mao Wu, and Guang-Qiong Xia
Photon. Res. 5(1) 6-10 (2017)

Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL

Zhu-Qiang Zhong, Song-Sui Li, Sze-Chun Chan, Guang-Qiong Xia, and Zheng-Mao Wu
Opt. Express 23(12) 15459-15468 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  2. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
    [Crossref]
  3. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  4. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [Crossref]
  5. A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
    [Crossref]
  6. X. Tang, Z. M. Wu, J. G. Wu, T. Deng, J. J. Chen, L. Fan, Z. Q. Zhong, and G. Q. Xia, “Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source,” Opt. Express 23(26), 33130–33141 (2015).
    [Crossref] [PubMed]
  7. X. Z. Li, S. S. Li, J. P. Zhuang, and S. C. Chan, “Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback,” Opt. Lett. 40(17), 3970–3973 (2015).
    [Crossref] [PubMed]
  8. F. Lin and J. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  9. C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).
  10. M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
    [Crossref]
  11. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  12. A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
    [Crossref]
  13. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
    [Crossref] [PubMed]
  14. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
    [Crossref]
  15. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
    [Crossref]
  16. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref] [PubMed]
  17. T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
    [Crossref]
  18. Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
    [Crossref]
  19. E. M. Shahverdiev and K. A. Shore, “Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization,” Opt. Commun. 282(17), 3568–3572 (2009).
    [Crossref]
  20. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
    [Crossref] [PubMed]
  21. J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
    [Crossref]
  22. H. Lin, Y. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32(9), 1829–1836 (2014).
    [Crossref]
  23. Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
    [Crossref]
  24. J. G. Wu, Z. M. Wu, G. Q. Xia, and G. Y. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express 20(2), 1741–1753 (2012).
    [Crossref] [PubMed]
  25. Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).
  26. Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).
  27. S. Li, Q. Liu, and S. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics 4(5), 1930–1935 (2012).
    [Crossref]
  28. S. Li and S. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21(6), 541–552 (2015).
    [Crossref]
  29. Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
    [Crossref]
  30. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  31. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  32. L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
    [Crossref]
  33. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
    [Crossref]
  34. W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40(13), 3181–3184 (2015).
    [Crossref] [PubMed]

2017 (1)

Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

2016 (4)

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).

A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
[Crossref]

2015 (4)

2014 (3)

Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

H. Lin, Y. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32(9), 1829–1836 (2014).
[Crossref]

2013 (2)

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

2012 (3)

2011 (1)

2010 (2)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

2009 (4)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

E. M. Shahverdiev and K. A. Shore, “Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization,” Opt. Commun. 282(17), 3568–3572 (2009).
[Crossref]

J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref] [PubMed]

2008 (2)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

2007 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (1)

F. Lin and J. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

1998 (1)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1982 (2)

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Bünner, M. J.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Cao, L. P.

J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[Crossref]

Chan, S.

S. Li and S. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21(6), 541–552 (2015).
[Crossref]

S. Li, Q. Liu, and S. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics 4(5), 1930–1935 (2012).
[Crossref]

Chan, S. C.

Chen, J. J.

Chen, Y.

C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).

Cheng, C.

C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Dandridge, A.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Deng, T.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fan, L.

Feng, G. Y.

Fischer, I.

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Giaquinta, A.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Goldberg, L.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

Gong, Y.

Hegger, R.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Hong, Y.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

H. Lin, Y. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32(9), 1829–1836 (2014).
[Crossref]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Jacquot, M.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

Ji, S.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Ji, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Kantz, H.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Lavrov, R.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

Li, S.

S. Li and S. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21(6), 541–552 (2015).
[Crossref]

S. Li, Q. Liu, and S. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics 4(5), 1930–1935 (2012).
[Crossref]

Li, S. S.

Li, X. Z.

Lin, F.

C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).

F. Lin and J. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Lin, H.

Liu, J.

F. Lin and J. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Liu, Q.

S. Li, Q. Liu, and S. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics 4(5), 1930–1935 (2012).
[Crossref]

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Ma, R.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Miles, R. O.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Oliver, N.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Panajotov, K.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Pikasis, E.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Quirce, A.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Rao, Y. J.

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[Crossref] [PubMed]

Shahverdiev, E. M.

E. M. Shahverdiev and K. A. Shore, “Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization,” Opt. Commun. 282(17), 3568–3572 (2009).
[Crossref]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shore, K. A.

Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

H. Lin, Y. Hong, and K. A. Shore, “Experimental study of time-delay signatures in vertical-cavity surface-emitting lasers subject to double-cavity polarization-rotated optical feedback,” J. Lightwave Technol. 32(9), 1829–1836 (2014).
[Crossref]

E. M. Shahverdiev and K. A. Shore, “Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization,” Opt. Commun. 282(17), 3568–3572 (2009).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Soriano, M. C.

Spencer, P. S.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Sukow, D. W.

Sun, W.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Syvridis, D.

A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tang, C. H.

Tang, X.

Taylor, H. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

Wang, A.

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Wang, A. B.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B.

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Wang, B. J.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, N.

Wang, Y.

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Wang, Y. C.

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, Y. S.

Wang, Z. N.

Weller, J. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

Wu, J.

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

Wu, J. G.

Wu, T.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Wu, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

Wu, Z.

Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

Wu, Z. M.

Xia, G.

Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

Xia, G. Q.

Xu, H.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

Xu, W.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

Yang, Y.

Yang, Z. J.

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Zeng, X. P.

Zhang, J.

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

Zhang, M.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Zhang, S.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Zhang, W. L.

Zhang, X.

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

Zhang, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

Zhong, Z.

Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

Zhong, Z. Q.

Zhuang, J. P.

IEEE J. Photonics (4)

C. Cheng, Y. Chen, and F. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input–multiple-output chaos radar application,” IEEE J. Photonics 8(1), 1–14 (2016).

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE J. Photonics 6(5), 1–12 (2014).
[Crossref]

S. Li, Q. Liu, and S. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE J. Photonics 4(5), 1930–1935 (2012).
[Crossref]

Z. Zhong, Z. Wu, J. Wu, and G. Xia, “Time-delay signature suppression of polarization-resolved chaos outputs from two mutually coupled VCSELs,” IEEE J. Photonics 5(2), 1500409 (2013).
[Crossref]

IEEE J. Quantum Electron. (6)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18(10), 1509–1515 (1982).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Y. Hong, P. S. Spencer, and K. A. Shore, “Wideband chaos with time-delay concealment in vertical-cavity surface-emitting lasers with optical feedback and injection,” IEEE J. Quantum Electron. 50(4), 236–242 (2014).
[Crossref]

Y. Hong, A. Quirce, B. Wang, S. Ji, K. Panajotov, and P. S. Spencer, “Concealment of chaos time-delay signature in three-cascaded vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 52(8), 1–8 (2016).

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications,” IEEE J. Quantum Electron. 46(10), 1430–1435 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Lin and J. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

S. Li and S. Chan, “Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback,” IEEE J. Sel. Top. Quantum Electron. 21(6), 541–552 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE Trans. Microw. Theory Tech. 30(4), 401–410 (1982).
[Crossref]

J. Lightwave Technol. (4)

Math. Probl. Eng. (1)

Y. Wu, B. Wang, J. Zhang, A. Wang, and Y. Wang, “Suppression of time delay signature in chaotic semiconductor lasers with filtered optical feedback,” Math. Probl. Eng. 2013, 1–7 (2013).

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (3)

E. M. Shahverdiev and K. A. Shore, “Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization,” Opt. Commun. 282(17), 3568–3572 (2009).
[Crossref]

T. Wu, W. Sun, X. Zhang, and S. Zhang, “Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection,” Opt. Commun. 381, 174–179 (2016).
[Crossref]

J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Photonics Res. (1)

Z. Zhong, Z. Wu, and G. Xia, “Experimental investigation on the time-delay signature of chaotic output from a 1550 nm VCSEL subject to FBG feedback,” Photonics Res. 5(1), 6–10 (2017).
[Crossref]

Phys. Rev. Lett. (1)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The schematic diagrams of a semiconductor laser subject to external optical feedback from (a) a mirror and (b) a chirped FBG (CFBG).
Fig. 2
Fig. 2 Numerically simulated optical spectra (column 1), power spectra (column 2), time series (column 3), ACF traces (column 4) and DMI traces (column 5) with different dispersion: (a1-a5) 0ps/nm, i.e., mirror feedback, (b1-b5) 3333ps/nm and (c1-c5)5000ps/nm. The delay spectra and reflection spectra of CFBG are plotted with optical spectra together. I = 1.5Ith, κf = 0.1, τ = 5ns.
Fig. 3
Fig. 3 Simulated local optical spectra of laser subject to (a) mirror feedback and (b) CFBG feedback with dispersion of 5000ps/nm, corresponding to Figs. 2(a1) and 2(c1), respectively. I = 1.5Ith, κf = 0.1, τ = 5ns.
Fig. 4
Fig. 4 Numerically obtained effect of CFBG dispersion on TDS. I = 1.5Ith, κf = 0.1, τ = 5ns, L = 10cm. σ is the standard deviation of the background noise of ACF traces.
Fig. 5
Fig. 5 Numerically simulated output of laser with 5000ps/nm CFBG feedback separately obtained at intensity feedback levels of 0.0065% (a1-a5), 0.057% (b1-b5), 0.16% (c1-c5), and 1% (d1-d5). In each row, optical spectrum, power spectrum, time series, ACF trace and DMI trace are plotted from left to right. The reflection and delay spectrum of CFBG are plotted in the first column.
Fig. 6
Fig. 6 Numerical results of the TDS as function of feedback level obtained at different dispersion values of 2500ps/nm (squares), 3333ps/nm (dots), 5000ps/nm (triangles) and 10000ps/nm (diamonds). I = 1.5Ith. σ is the standard deviation of the background noise of ACF traces.
Fig. 7
Fig. 7 Experimental setup of a DFB semiconductor laser with dispersive feedback from a CFBG. PC: polarization controller; OC: optical coupler; OI: optical isolator; VOA: variable optical attenuator; EDFA: Erbium-doped fibre amplifier; PD: photodetector; OSC: real-time oscilloscope; SA: spectrum analyzer; OSA: optical spectrum analyzer.
Fig. 8
Fig. 8 Experimentally obtained optical spectra (column 1), power spectra (column 2), time series (column 3), ACF traces (column 4) and DMI traces (column 5): with mirror feedback at feedback strength of 10% (a1-a5), and with CFBG feedback separately at strength of 0.5% (b1-b5), 7% (c1-c5) and 10% (d1-d5). In the first column the reflection and delay spectrum of CFBG are plotted with optical spectrum together. In the second column, the insets plot the magnified local power spectrum in a range of 5-5.2GHz around the laser relaxation oscillation frequency.
Fig. 9
Fig. 9 Experimental local optical spectra of laser subject to mirror feedback (a) and CFBG feedback (b) with intensity feedback level of 10%. The insets show the whole spectra corresponding to Figs. 8(a1) and 8(d1).
Fig. 10
Fig. 10 (a) Experimental time series of the laser output and the dispersive feedback light from CFBG and (b) their correlation trace, obtained with an intensity feedback level of 10%. Note that the zero point of the feedback light waveform is moved up to 0.15V.
Fig. 11
Fig. 11 Experimentally obtained ACF value at the delay time as function of feedback strength. Black: mirror feedback; gray (red): CFBG feedback. I = 1.8Ith.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E d t = 1 + i α 2 [ g ( N N 0 ) 1 + ε | E | 2 1 τ p ] E + κ f τ i n t T t h ( t t ' ) E ( t ' τ ) d t ' ,
d N d t = I q V N τ N g ( N N 0 ) 1 + ε | E | 2 | E | 2 ,
[ S M R M ] = F M F M 1 F j F 1 [ 1 0 ]
F j = [ cos h ( γ j Δ L ) i σ ^ j γ j sin h ( γ j Δ L ) i κ j γ j sin h ( γ j Δ L ) i κ j γ j sin h ( γ j Δ L ) cos h ( γ j Δ L ) + i σ ^ j γ j sin h ( γ j Δ L ) ] ,
γ j = κ j 2 σ ^ j 2 , σ ^ j n eff ( ω ω j ) / c , κ j = ω j ρ < δ n > / 2 c ,

Metrics