Abstract

Based on restricted interferences mechanism in a 1x2 MMI beam splitter, we theoretically investigate and experimentally demonstrate an ultra-compact MMI-based demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. The device is fabricated on 340 nm SOI platform, with a footprint of 293x6 μm2. It exhibits extremely low insertion losses of 0.14 dB and 1.2 dB at the wavelengths of 1.55 μm and 2 μm, respectively, with contrasts of approximately 20 dB for both wavelengths, and a cross-talk of 18.83 dB.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures

Jinbiao Xiao, Xu Liu, and Xiaohan Sun
Opt. Express 15(13) 8300-8308 (2007)

Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides

Yuxin Wei, Guoyi Li, Yinlei Hao, Yubo Li, Jianyi Yang, Minghua Wang, and Xiaoqing Jiang
Opt. Express 19(17) 15803-15809 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Thomson, C. G. Littlejohns, S. Stanković, and S. A. R. M. Nedeljkovic, Silicon Photonics (Wiley Encyclopedia of Electrical and Electronics Engineering, 2015), pp. 1–22.
  2. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
    [Crossref]
  3. F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Investigation of germanium Raman lasers for the mid-infrared,” Opt. Express 23(13), 17237–17254 (2015).
    [Crossref] [PubMed]
  4. M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
    [Crossref]
  5. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  6. G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
    [Crossref]
  7. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  8. M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, T. B. Dominguez, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Grating coupled low loss Ge-on-Si waveguides and multimode interferometers for the mid-infrared,” in Optical Fibre Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper WA4.3.
    [Crossref]
  9. P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
    [Crossref]
  10. M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
    [Crossref]
  11. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
    [Crossref]
  12. Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
    [Crossref] [PubMed]
  13. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  14. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  15. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]
  16. B. Souhan, R. R. Grote, C. P. Chen, H.-C. Huang, J. B. Driscoll, M. Lu, A. Stein, H. Bakhru, K. Bergman, W. M. J. Green, and R. M. Osgood, “Si+-implanted Si-wire waveguide photodetectors for the mid-infrared,” Opt. Express 22(22), 27415–27424 (2014).
    [Crossref] [PubMed]
  17. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  18. K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
    [Crossref]
  19. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15(13), 8300–8308 (2007).
    [Crossref] [PubMed]
  20. B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).
  21. S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
    [Crossref]
  22. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  23. H. Lin, Z. Yi, and J. Hu, “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design,” Opt. Lett. 37(8), 1304–1306 (2012).
    [Crossref] [PubMed]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  25. Online Available: https://www.lumerical.com/tcad-products/mode/EME .

2016 (2)

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).

2015 (5)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Investigation of germanium Raman lasers for the mid-infrared,” Opt. Express 23(13), 17237–17254 (2015).
[Crossref] [PubMed]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

2014 (2)

2013 (4)

2012 (2)

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
[Crossref]

H. Lin, Z. Yi, and J. Hu, “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design,” Opt. Lett. 37(8), 1304–1306 (2012).
[Crossref] [PubMed]

2011 (2)

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

2010 (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2007 (1)

2004 (1)

S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
[Crossref]

1996 (1)

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Alam, S. U.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Baddela, N. K.

Bakhru, H.

Baldassarre, L.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Becker, M.

Bergman, K.

Biagioni, P.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Bucio, T. D.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Calandrini, E.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Campenhout, J. V.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Chen, C. P.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Daniel, J. M. O.

De Leonardis, F.

Driscoll, J. B.

Ellis, A. D.

Finlayson, E. D.

Frigerio, J.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Gallacher, K.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Gardes, F. Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

Giliberti, V.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Gray, D. R.

Green, W. M. J.

Grote, R. R.

Gruner-Nielsen, L.

Gunning, F. C. G.

Guo, H.-C.

S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
[Crossref]

Haodong, Q.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Hon, N. K.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

Hu, J.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

H. Lin, Z. Yi, and J. Hu, “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design,” Opt. Lett. 37(8), 1304–1306 (2012).
[Crossref] [PubMed]

Hu, T.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Hu, Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

Huang, H.-C.

Isella, G.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Jalali, B.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

Jenkins, R. M.

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Jung, Y.

Kelly, B.

Khokhar, A. Z.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lee, W.-Y.

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[Crossref]

Li, K.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Li, M.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Li, Z.

Lin, H.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

H. Lin, Z. Yi, and J. Hu, “Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design,” Opt. Lett. 37(8), 1304–1306 (2012).
[Crossref] [PubMed]

Lin, K.-C.

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[Crossref]

Littlejohns, C. G.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Liu, C.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Liu, X.

Loo, R.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lu, M.

MacSuibhne, N.

Malik, A.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Malka, D.

B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

Millar, R. W.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Mitchell, C. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Muneeb, M.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Nedeljkovic, M.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
[Crossref]

Numkam, E.

O’Carroll, J.

Ortolani, M.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Osgood, R. M.

Pálsdóttir, B.

Parmigiani, F.

Passaro, V. M. N.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Investigation of germanium Raman lasers for the mid-infrared,” Opt. Express 23(13), 17237–17254 (2015).
[Crossref] [PubMed]

Paul, D. J.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Penadés, J. S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Petropoulos, P.

Petrovich, M. N.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Phelan, R.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Poletti, F.

Reed, G. T.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

Reynolds, S. A.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Richardson, D. J.

Roelkens, G.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Rouifed, M.-S.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Sakat, E.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Samarelli, A.

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Shimura, Y.

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Simakov, N.

Slavík, R.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Soref, R.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Investigation of germanium Raman lasers for the mid-infrared,” Opt. Express 23(13), 17237–17254 (2015).
[Crossref] [PubMed]

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
[Crossref]

Souhan, B.

Stankovic, S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Stein, A.

Sun, X.

Thomson, D. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Tina, G. X.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Topley, R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Troia, B.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Investigation of germanium Raman lasers for the mid-infrared,” Opt. Express 23(13), 17237–17254 (2015).
[Crossref] [PubMed]

Tsai, C.-W.

S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
[Crossref]

Tsao, S.-L.

S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, H.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Wang, Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Wheeler, N. V.

Wilson, P. R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

Wooler, J. P.

Xiao, J.

Yi, Z.

Zaken, B. B. B.

B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).

Zanzury, T.

B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).

Zhang, Z.

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

Zhao, J.

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Electron. Lett. (1)

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, K. Li, M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon photonic waveguides and devices for near- and mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M.-S. Rouifed, C. G. Littlejohns, G. X. Tina, Q. Haodong, T. Hu, Z. Zhang, C. Liu, G. T. Reed, and H. Wang, “Low loss SOI waveguides and MMIs at the MIR wavelength of 2 μm,” IEEE Photonics Technol. Lett. 28(24), 2827–2829 (2016).
[Crossref]

J. Appl. Phys. (1)

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

J. Nanophotonics (1)

P. Biagioni, J. Frigerio, A. Samarelli, K. Gallacher, L. Baldassarre, E. Sakat, E. Calandrini, R. W. Millar, V. Giliberti, G. Isella, D. J. Paul, and M. Ortolani, “Group-IV midinfrared plasmonics,” J. Nanophotonics 9(1), 093789 (2015).
[Crossref]

Mater. Lett. (1)

B. B. B. Zaken, T. Zanzury, and D. Malka, “An 8-Channel Wavelength MMI demultiplexer in slot waveguide structure,” Mater. Lett. 9(881), 1–10 (2016).

Nat. Photonics (4)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Opt. Commun. (1)

S.-L. Tsao, H.-C. Guo, and C.-W. Tsai, “A novel 1 × 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232(1–6), 371–379 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

M. Nedeljkovic, R. A. Soref, and G. Z. Mashanovich, “Free-carrier electro-absorption and electro-refraction modulation in group IV materials at mid-infrared wavelengths,” Proc. SPIE 8266, 82660Y (2012).
[Crossref]

Other (3)

D. J. Thomson, C. G. Littlejohns, S. Stanković, and S. A. R. M. Nedeljkovic, Silicon Photonics (Wiley Encyclopedia of Electrical and Electronics Engineering, 2015), pp. 1–22.

M. Nedeljkovic, J. S. Penadés, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, T. B. Dominguez, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Grating coupled low loss Ge-on-Si waveguides and multimode interferometers for the mid-infrared,” in Optical Fibre Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper WA4.3.
[Crossref]

Online Available: https://www.lumerical.com/tcad-products/mode/EME .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the MMI-DeX (a) top view, (b) input cross-section view, (c) output cross-section view.

Fig. 2
Fig. 2

Transmission at the two output ports for: (a) 1.55 μm and (b) 2 μm.

Fig. 3
Fig. 3

MMI-DeX simulated performance (a) The contrast and (b) the insertion loss of the MMI-based DeX as a function of the MMI’s length for the wavelengths of 1.55 μm and 2 μm. Simulated power intensity profile at (c) 1.55 μm and (d) 2 μm wavelength for an MMI length of 290 μm.

Fig. 4
Fig. 4

SEM image of the input/output grating coupler, (a) @ 2 μm and (b) @ 1.55 μm, (c) SEM image of the two output waveguides of the MMI. The width of the MMI and waveguides are 6 μm and 1.3 μm respectively. The gap between the two waveguides is 700 nm.

Fig. 5
Fig. 5

(a) & (b) The transmission through the two output waveguides at 2 μm and 1.55 μm as a function of MMI length. Dashed blue arrows show where the maximum contrast is obtained. (c) Transmission spectra of the MMI at NIR wavelengths for different lengths measured at port 3. Inset: Optimal MMI length (in terms of insertion loss) as a function of the wavelength.

Tables (1)

Tables Icon

Table 1 Dimensions of the simulated MMI device

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L MMI =p L π
L π = 4 n eff W e 2 3 λ 0
L MMI =p L π λ 1 =( p+q ) L π λ 2
IL=10Lo g 10 ( P i P 1 )
C=10Lo g 10 ( P i P j )

Metrics