Abstract

We demonstrate a fully integrated polarization-diversity 8 × 8 thermo-optic Si-wire switch that uses only a single path-independent insertion loss (PILOSS) switch matrix. All input/output ports of the PILOSS switch matrix are uniquely assigned for polarization diversity without switch duplication. To integrate polarization splitter-rotators on a chip, we propose a compact path-length-equalized polarization-diversity switch configuration. Polarization-dependent loss (PDL) and differential group delay (DGD) are minimized. The 8 × 8 switch is fabricated by the CMOS-compatible fabrication process on 300-mm diameter wafer and additional etching of upper cladding after dicing. The chip size is 7 × 10.5 mm2. A PDL of 2 dB and a DGD of 1.5 ps are achieved. The crosstalk in the worst-case scenario is −20 dB in the full C-band.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch

Keijiro Suzuki, Ken Tanizawa, Takashi Matsukawa, Guangwei Cong, Sang-Hun Kim, Satoshi Suda, Morifumi Ohno, Tadashi Chiba, Hirofumi Tadokoro, Masashi Yanagihara, Yasushi Igarashi, Meishoku Masahara, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(4) 3887-3894 (2014)

Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer

Ken Tanizawa, Keijiro Suzuki, Munehiro Toyama, Minoru Ohtsuka, Nobuyuki Yokoyama, Kazuyuki Matsumaro, Miyoshi Seki, Keiji Koshino, Toshio Sugaya, Satoshi Suda, Guangwei Cong, Toshio Kimura, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 23(13) 17599-17606 (2015)

Compact 2 × 2 polarization-diversity Si-wire switch

Sang-Hun Kim, Ken Tanizawa, Yuya Shoji, Guangwei Cong, Keijiro Suzuki, Kazuhiro Ikeda, Hiroshi Ishikawa, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(24) 29818-29826 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in European Conference on Optical Communication (Optical Society of America, 2014), paper PD.1.3.
    [Crossref]
  2. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OTuM2.
    [Crossref]
  3. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  4. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  5. T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8x8 silicon photonic switch based on optical phased array,” in European Conference and Exhibition on Optical Communication (IEEE, 2015), paper P.2.9.
  6. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
    [Crossref] [PubMed]
  7. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  8. S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and Low-Loss 8x8 Silicon Photonic Switch Module for Transponder Aggregators in CDC-ROADM Application,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.6.
    [Crossref]
  9. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50x50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in European Conference and Exhibition on Optical Communication (2016), paper Th.3.A.5.
  10. K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch,” Opt. Express 24(7), 6861–6868 (2016).
    [Crossref] [PubMed]
  11. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  12. K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Fully integrated non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W4E.5.
    [Crossref]
  13. T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, 1987), paper WB2.
  14. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  15. M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-Based 8x8 Optical Matrix Switch Integrating New Switching Units with Large Fabrication Tolerance,” J. Lightwave Technol. 17, 771- (1999).
  16. K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching Proceedings (IEEE Photonics Society, 2016), paper PD2–3.

2016 (2)

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2011 (1)

Baehr-Jones, T.

Bowers, J. E.

Chen, L.

Chen, Y.-K.

Chiba, T.

Cong, G.

Dai, D.

Ding, R.

Han, S.

Hochberg, M.

Igarashi, Y.

Ikeda, K.

Kawashima, H.

Kim, S.-H.

Kimura, T.

Koshino, K.

Lim, A. E. J.

Lo, G. Q.

Ma, Y.

Masahara, M.

Matsukawa, T.

Matsumaro, K.

Matsuura, H.

K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching Proceedings (IEEE Photonics Society, 2016), paper PD2–3.

Muller, R. S.

Namiki, S.

Novack, A.

Ohno, M.

Ohtsuka, M.

Quack, N.

Seki, M.

Seok, T. J.

Suda, S.

Sugaya, T.

Suzuki, K.

Tadokoro, H.

Tanizawa, K.

Toyama, M.

Wu, M. C.

Yanagihara, M.

Yang, S.

Yokoyama, N.

Zhang, Y.

Opt. Express (6)

Optica (1)

Other (9)

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and Low-Loss 8x8 Silicon Photonic Switch Module for Transponder Aggregators in CDC-ROADM Application,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.6.
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50x50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in European Conference and Exhibition on Optical Communication (2016), paper Th.3.A.5.

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8x8 silicon photonic switch based on optical phased array,” in European Conference and Exhibition on Optical Communication (IEEE, 2015), paper P.2.9.

J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in European Conference on Optical Communication (Optical Society of America, 2014), paper PD.1.3.
[Crossref]

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OTuM2.
[Crossref]

M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-Based 8x8 Optical Matrix Switch Integrating New Switching Units with Large Fabrication Tolerance,” J. Lightwave Technol. 17, 771- (1999).

K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching Proceedings (IEEE Photonics Society, 2016), paper PD2–3.

K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Fully integrated non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper W4E.5.
[Crossref]

T. Shimoe, K. Hajikano, and K. Murakami, “Path-independent insertion loss optical space switch,” in Optical Fiber Communication, OSA Technical Digest Series (Optical Society of America, 1987), paper WB2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic configuration of a non-duplicate polarization-diversity 8 × 8 switch with compact path-length-equalized waveguide arrangements.
Fig. 2
Fig. 2 Microscopic images of (a) MZ element switch and (b) PSR.
Fig. 3
Fig. 3 Pictures of the non-duplicate polarization-diversity 8 × 8 switch.
Fig. 4
Fig. 4 Transmission spectra of the MZ element switch in the (a) cross and (b) bar states.
Fig. 5
Fig. 5 Transmission spectra and PDL of the PSR.
Fig. 6
Fig. 6 On-chip loss of the 8 × 8 switch for all 64 paths at 1550 nm.
Fig. 7
Fig. 7 (a) PDL and (b) DGD of the 8 × 8 switch for sampled 24 paths.
Fig. 8
Fig. 8 Crosstalk of the 8 × 8 switch in the worst-case scenario: (a) a switch state in the worst-case scenario, where path connections (input port #, output port #) are (1, 8); (2, 6); (3, 2); (4, 4); (5, 3); (6, 5); (7, 1); and (8, 7), and (b) measured crosstalk characteristics.

Metrics