Abstract

Curved nanostructures are formed on the lithium niobate surfaces after irradiation with linearly polarized femtosecond laser pulses. It is shown that the curvature of nanostructures critically depends on the overlapping of two successive pulses, which can be controlled by changing the scanning speed or scanning direction of the laser. Electrical field simulation using the finite-difference time-domain (FDTD) method indicates that the electric field is locally enhanced at the crater edge when a focused pulse propagates through an elliptical crater produced by the previous pulse, which is responsible for the formation of the curved nanostructures. From the experimental and simulation results, the formation mechanism of the curved nanostructures is presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation

Xu Ji, Lan Jiang, Xiaowei Li, Weina Han, Yang Liu, Qiang Huang, and Yongfeng Lu
Appl. Opt. 53(29) 6742-6748 (2014)

Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating

Qiang Li, Qiang Wu, Yanan Li, Chunling Zhang, Zixi Jia, Jianghong Yao, Jun Sun, and Jingjun Xu
Photon. Res. 6(8) 789-793 (2018)

The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses

Cyril Hnatovsky, Vladlen G. Shvedov, and Wieslaw Krolikowski
Opt. Express 21(10) 12651-12656 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  2. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  3. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
    [Crossref] [PubMed]
  4. R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3(9), 1378–1384 (2013).
    [Crossref]
  5. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
    [Crossref] [PubMed]
  6. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
    [Crossref]
  7. S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
    [Crossref]
  8. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
    [Crossref] [PubMed]
  9. D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
    [Crossref]
  10. J. Bai, G. Cheng, X. Long, Y. Wang, W. Zhao, G. Chen, R. Stoian, and R. Hui, “Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire,” Opt. Express 20(14), 15035–15044 (2012).
    [Crossref] [PubMed]
  11. J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
    [Crossref]
  12. K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
    [Crossref]
  13. B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
    [Crossref]
  14. M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
    [Crossref]
  15. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
    [Crossref]
  16. A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
    [Crossref]
  17. R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
    [Crossref]
  18. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  19. J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. S. Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express 21(3), 3243–3252 (2013).
    [Crossref] [PubMed]

2016 (1)

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

2014 (1)

2013 (4)

R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3(9), 1378–1384 (2013).
[Crossref]

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. S. Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express 21(3), 3243–3252 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

2009 (1)

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

2008 (2)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[Crossref] [PubMed]

2007 (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

2003 (1)

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Afshar, M.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

An, Q.

Bai, J.

Bettiol, A. A.

Booth, M. J.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Castillo-Vega, G. R.

Chen, F.

Chen, G.

Cheng, G.

Cumming, B. P.

Dai, N.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Danner, A. J.

Deng, J.

Denz, C.

Duan, J.

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Feili, D.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

Garcia-Martin, A.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Grigoropoulos, C. P.

J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Gu, M.

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Guo, C.

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

He, R.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Herman, P.

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Horn, W.

Hui, R.

Hussain, S.

Imbrock, J.

Jaque, D.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[Crossref] [PubMed]

Jaque, F.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Jeon, H.

J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Jesacher, A.

Jia, W.

Jia, Y.

Kitano, R.

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

König, K.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

Kroesen, S.

Kudriašov, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

Kumar, V. S.

Lamela, J.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Li, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Lifante, G.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Long, X.

Lu, P.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Malinauskas, M.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

Mazur, E.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Nejadmalayeri, A. H.

Nolte, S.

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Obara, G.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Obara, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

Ozono, K.

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

Paipulas, D.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

Park, J. B.

J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Png, C. E.

Rademaker, K.

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

Ródenas, A.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[Crossref] [PubMed]

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Seidel, H.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

Shimizu, H.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Sirutkaitis, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

Smilgevicius, V.

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

Stoian, R.

Straub, M.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

Terakawa, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Thor, L. S.

Tsuda, H.

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

Vázquez de Aldana, J. R.

Wang, C.

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

Wang, X.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Wang, Y.

J. Bai, G. Cheng, X. Long, Y. Wang, W. Zhao, G. Chen, R. Stoian, and R. Hui, “Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire,” Opt. Express 20(14), 15035–15044 (2012).
[Crossref] [PubMed]

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Weigand, B.

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Wilson, T.

Yin, K.

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

Yoo, J.-H.

J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Yu, B.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Zhao, W.

Zheng, Q.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Zhou, G.

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

Appl. Phys. B (1)

S. Ringleb, K. Rademaker, S. Nolte, and A. Tünnermann, “Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses,” Appl. Phys. B 102(1), 59–63 (2011).
[Crossref]

Appl. Phys. Express (1)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. Ródenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. Garcia-Martin, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-λ/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[Crossref]

J.-H. Yoo, J. B. Park, H. Jeon, and C. P. Grigoropoulos, “Graphene folds by femtosecond laser ablation,” Appl. Phys. Lett. 100(23), 233124 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

K. Yin, C. Wang, J. Duan, and C. Guo, “Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating,” Appl. Phys., A Mater. Sci. Process. 122(9), 834 (2016).
[Crossref]

D. Paipulas, V. Kudriašov, M. Malinauskas, V. Smilgevičius, and V. Sirutkaitis, “Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 104(3), 769–773 (2011).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Opt. (1)

M. Straub, B. Weigand, M. Afshar, D. Feili, H. Seidel, and K. König, “Periodic subwavelength ripples on lithium niobate surfaces generated by tightly focused sub-15 femtosecond sub-nanojoule pulsed near-infrared laser light,” J. Opt. 15(5), 055601 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystals,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
[Crossref]

Proc. SPIE (1)

R. Kitano, K. Ozono, M. Obara, and H. Tsuda, “Femtosecond laser ablation processing of x-cut LiNbO3 substrates for optical communication devices,” Proc. SPIE 4977, 386–393 (2003).
[Crossref]

Other (1)

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Diagram of surface structures produced on LN at various combinations of scanning speed and laser fluence. (b)‒(e) SEM images of surface structures created with different laser scanning speeds at laser fluence of 0.84 J/cm2. K: laser light propagation direction; S: scanning direction; E: laser polarization direction. Please note that the letters in (a) link parameters with the SEM images.
Fig. 2
Fig. 2 (a) Schematic of FDTD simulation system and experimental situation. (b) Dependence of the eccentricity (black line) and depth (pink dashed line) of the elliptical crater obtained at the scanning speed of 2000 µm/s on the laser fluence. Insets in (b) show AFM images of the geometry of an elliptical crater obtained at the scanning speed of 2000 µm/s and at the laser fluence of 0.89 J/cm2. (c), (e) and (g) Distribution of simulated electric field on yz plane induced by an elliptical crater on the surface of LN. The focus position of the Gaussian beam shifts by the pulse-to-pulse spacing d (1000 nm, 700 nm and 500 nm, respectively) along the z axis from the elliptical crater center. (d), (f) and (h) SEM images of the scanned lines on the surface of LN by using the scanning speed of 1000 µm/s, 700 µm/s and 500 µm/s, respectively. The laser fluence is fixed at 0.84 J/cm2.
Fig. 3
Fig. 3 (a) Schematic illustration of the experimental situation and the FDTD simulation setup. α is the angle between scanning direction and polarization direction. (b) The curvature radius of the curved nanostructures dependence on the scanning direction. The scanning speed is fixed at 400 µm/s. (c)‒(i) SEM images of the scanned lines on the surface of LN by using different scanning direction. The letters in (b) link parameters with the SEM images. (j)‒(p) Calculated electric field distributions of the laser light propagating through an elliptical crater on the surface of LN. The focus position of the laser light is varied by using different α.
Fig. 4
Fig. 4 (a) Curvature radius variation for two scanning directions when the curved structures are generated by double scanning mode. (b)‒(e) SEM images of the curved nanostructures produced on LN surface by ablation using double scanning with different laser fluences at scanning speed of 2000 µm/s. The letters in (a) link parameters with the SEM images.
Fig. 5
Fig. 5 (a) Curvature radius variation for two scanning directions when the symmetric curved structures are generated by double scanning mode. (b)‒(e) SEM images of the symmetric curved structures created on the surface of LN by irradiation with double scanning with suitable combinations of laser fluence and scanning speed. The letters in (a) link parameters with the SEM images.
Fig. 6
Fig. 6 SEM images of the evolution of the surface nanostructures with various scanning speed and scanning direction.

Metrics