Abstract

Nanoantennas can tailor light-matter interaction for optical communication, sensing, and spectroscopy. Their design is inspired by radio-frequency rules which partly break down at optical frequencies. Here we find unexpected nanoantenna designs exhibiting strong light localization and enhancement by using a general and scalable evolutionary algorithm based on FDTD simulations that also accounts for geometrical fabrication constraints. The resulting nanoantennas are “printed” directly by focused-ion beam milling and their fitness ranking is validated experimentally by two-photon photoluminescence. We find the best antennas’ operation principle deviating from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization in nano photonics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of a genetic algorithm technique in solid-state laser pump cavity development

Rene Franzen, Christian Apel, Friedrich Lampert, and Jörg Meister
Appl. Opt. 46(8) 1302-1309 (2007)

Advanced engineering of single-crystal gold nanoantennas

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier
Opt. Mater. Express 7(4) 1157-1168 (2017)

Spectral tunability of a plasmonic antenna with a dielectric nanocrystal

Yury Alaverdyan, Nick Vamivakas, Joshua Barnes, Claire Lebouteiller, Jack Hare, and Mete Atatüre
Opt. Express 19(19) 18175-18181 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Balanis, “Antenna theory: A review,” Proceedings of the IEEE 80, 7–23 (1992).
    [Crossref]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
    [Crossref]
  3. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  4. A. P. A.F. Koenderink and A. Alu, “Nanophotonics: shrinking light-based technology,” Science 348(6234), 516–521 (2015).
    [Crossref] [PubMed]
  5. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007)
  6. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [Crossref] [PubMed]
  7. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [Crossref] [PubMed]
  8. N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
    [Crossref]
  9. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  10. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  11. A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
    [Crossref] [PubMed]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
    [Crossref]
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
    [Crossref]
  14. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
    [Crossref]
  15. K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
    [Crossref]
  16. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
    [Crossref] [PubMed]
  17. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro, and L. D. Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
    [Crossref] [PubMed]
  18. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
    [Crossref] [PubMed]
  19. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
    [Crossref] [PubMed]
  20. C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).
  21. S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer-VerlagBerlin Heidelberg, 2008).
  22. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
    [Crossref]
  23. R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
    [Crossref]
  24. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref] [PubMed]
  25. A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).
  26. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
    [Crossref] [PubMed]
  27. K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
    [Crossref]
  28. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
    [Crossref] [PubMed]
  29. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [Crossref] [PubMed]
  30. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
    [Crossref]
  31. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, figshare (2017) [retrieved 20 February 2017], https://doi.org/10.6084/m9.figshare.4669009

2015 (2)

A. P. A.F. Koenderink and A. Alu, “Nanophotonics: shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

2014 (3)

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

2012 (4)

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

2011 (4)

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

2010 (7)

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro, and L. D. Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

2007 (2)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
[Crossref]

2006 (2)

2005 (2)

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

1992 (1)

C. A. Balanis, “Antenna theory: A review,” Proceedings of the IEEE 80, 7–23 (1992).
[Crossref]

Aizpurua, J.

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

Alivisatos, a. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

Alu, A.

A. P. A.F. Koenderink and A. Alu, “Nanophotonics: shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

Apell, P.

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

Balanis, C. A.

C. A. Balanis, “Antenna theory: A review,” Proceedings of the IEEE 80, 7–23 (1992).
[Crossref]

Berkovitch, N.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Best, M. D.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Camden, J. P.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Crozier, K. B.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Dal Negro, L.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro, and L. D. Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

Deepa, S. N.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer-VerlagBerlin Heidelberg, 2008).

Donelli, M.

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Eisler, H.-J.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

Engheta, N.

A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Fernández-Domínguez, A. I.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Fernández-García, R.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Forestiere, C.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro, and L. D. Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

Gage, E. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Gao, K.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

García-Etxarry, A.

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

Geisler, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Giannini, V.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Ginzburg, P.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

Hammack, A. T.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

He, Y.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Ilin, K. S.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Käll, M.

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

Kamp, M.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Kern, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Kirby, R. M.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

Koenderink, A. P. A.F.

A. P. A.F. Koenderink and A. Alu, “Nanophotonics: shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kuhl, J.

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Lederer, F.

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Lemmer, U.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

Lin, S.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

Maier, S. A.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007)

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
[Crossref]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, L. Dal Negro, and L. D. Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref]

Negro, L. D.

Nevet, A.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref]

Orenstein, M.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Prangsma, J. C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Scholz, W.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

Shor, I.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

Siegel, M.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

Sivanandam, S. N.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer-VerlagBerlin Heidelberg, 2008).

Sonnefraud, Y.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Soukoulis, C. M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Stipe, B. C.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Walsh, G. F.

Wang, D.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Wang, R.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

Wissert, M. D.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

Wu, X.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Xu, X.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zeni, E.

Zentgraf, T.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Zhou, N.

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Zhu, W.

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

ACS Phot. (1)

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles'Morphology,” ACS Phot. 1(3), 68–78 (2015).

Contemp. Phys. (1)

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

K. B. Crozier, W. Zhu, D. Wang, S. Lin, M. D. Best, and J. P. Camden, “Plasmonics for surface enhanced raman scattering: Nanoantennas for single molecules,” IEEE Journal of Selected Topics in Quantum Electronics 20(3), 1–11 (2014).
[Crossref]

J. Chem. Phys. (2)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “Erratum: An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 189901 (2007).
[Crossref]

J. Phys. Chem. B (1)

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref]

Nano Lett. (5)

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10(10), 4161–4165 (2010).
[Crossref] [PubMed]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode Imaging and Selection in Strongly Coupled Nanoantennas,” Nano Lett. 10(6), 2105–2110 (2010).
[Crossref] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

N. Zhou, X. Xu, A. T. Hammack, B. C. Stipe, K. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141–155 (2014).
[Crossref]

Nat. Comm. (2)

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Comm. 2, 333 (2011).
[Crossref]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Nat. Mat. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mat. 7(6), 442–453 (2008).
[Crossref]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and a. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mat. 10(8), 631–636 (2011).
[Crossref]

Nat. Photon. (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

Opt. Express (2)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

A. García-Etxarry, P. Apell, M. Käll, and J. Aizpurua, “A combination of concave / convex surfaces for field-enhancement optimization : the indented nanocone,” Opt. Express 20(23), 1111–1116 (2012).

Opt. Lett. (1)

Phys. Rev. Lett. (4)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109, 127701 (2012).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Proceedings of the IEEE (1)

C. A. Balanis, “Antenna theory: A review,” Proceedings of the IEEE 80, 7–23 (1992).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Science (2)

A. P. A.F. Koenderink and A. Alu, “Nanophotonics: shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007)

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms (Springer-VerlagBerlin Heidelberg, 2008).

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, figshare (2017) [retrieved 20 February 2017], https://doi.org/10.6084/m9.figshare.4669009

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Genome and geometric constraints. (a) 3D sketch of an exemplary geometry on top of an 10 nm ITO podest on an ITO layer covering a glass substrate. The rounded features occur due to FIB milling. (b) binary 5×5 genome of a small optical bow-tie-like antenna, where ’1’ denotes the positions at which the gold will be removed. (c) Rules for replacing neighboring hole arrangements by structures that can be fabricated by FIB. rh: hole radius, dh: center-to-center hole distance. (d) top view of the structure resulting from the genome in (b) after applying the rules sketched in (c). r0 denotes the point of optimization for the NFIE.
Fig. 2
Fig. 2 Properties of the fittest evolutionary antenna (FEA): (a) 3D sketch of the reference dipolar antenna (top) and the FEA (bottom) on substrate. (b) Near field intensity enhancement (NFIE) spectrum at the very center of the reference antenna (black dashed) and the FEA (red). The optimization wavelength is marked blue. (c) Toggle plot of FEA (for details see text). (d) Near field intensity and current direction (white arrows) in the center plane of the FEA. (e) Model for the operation principle of the FEA constructively combining current patterns from two split-ring resonators and two rod antennas. All scale bars are 100 nm.
Fig. 3
Fig. 3 Experimental realization of evolutionary antennas: (a) Exemplary SEM image of the EA antenna array realized by means of FIB milling together with geometry sketches and simulated fitness. Each row contains six to eight copies of the same geometry, the fitness decreasing from top to bottom (scale bar 1 μm). (b) TPPL map of the fabricated array (scale bar 1 μm). The insets in (a) and (b) show detailed maps of one of the very best antennas (scale bars 500 nm). (c) TPPL data (black dots) alongside with simulated fitness (near field intensity enhancement - red line) and the simulated TPPL (eq. (1) - blue line).
Fig. 4
Fig. 4 11×11 test pattern design for FIB benchmarking. Left: Sketch of geometry. Right: SEM picture of the resulting structure produced by FIB milling in 30 nm thick monocrystalline gold (scale bar = 100 nm).
Fig. 5
Fig. 5 Working principle of the evolutionary algorithm. Upper panel: Flowchart of the EA steps. Initially the fitness parameter of 30 random structures is evaluated by means of FDTD simulations. After ranking, the best eight are used for building the next generation by means of mutation and crossing. Bottom panel: Methods of inheritance. Left: Mutation changes single bits (red) with a given probability. Linear and spiral crossing mix the genome of two different parents (blue and green). Linear crossing combines left and right parts, while spiral crossing combines inner and outer parts of two parents.
Fig. 6
Fig. 6 Development of the fitness parameter for the EA discussed here. Each point denotes a single individual. Also the best fitness per generation (red) as well as the mean fitness per generation (orange) are shown.
Fig. 7
Fig. 7 AFM measurement used for the determination of optical antenna thickness. The green and blue marked areas were used to evaluate height histograms.
Fig. 8
Fig. 8 Change in fitness of evolutionary antennas for different layer thicknesses. The best four antennas decrease in near-field intensity enhancement as their thickness is reduced, the last two behave not systematically.
Fig. 9
Fig. 9 Change in fitness of evolutionary antennas dependent on the hole diameter/line width. As the width gets smaller, the near-field intensity enhancement increases by a large margin.
Fig. 10
Fig. 10 Reproduction of Fig. 3(c), however, with additional data evaluated from the very center of the TPPL spots only (green). More details in text.
Fig. 11
Fig. 11 a) Spectrum of the field inside the material of the evolutionary antennas, integrated over their respective volumes. b) Approximative corrections to the numerical TPPL signal due to TPPL emission enhancement. More details in text.
Fig. 12
Fig. 12 Experimental setup for TPPL microscopy. L: lens; ND/P: neutral density filter and polarizer; NPBS: non-polarizing beam-splitter; F: filters; FM: flip mirror. For further information see text.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I T P P L V E 4 d V a n t .
r = | E | 4 ( r 0 ) V a n t e n n a | E | 4 ( r ) d V

Metrics