Abstract

We studied quantitative phase imaging (QPI) using coherent laser illumination coupled with static and moving optical diffusers. The spatial coherence of a continuous-wave laser was controlled by tuning the particle size and the diffusion angle of optical diffusers for speckle-reduced 3D phase imaging of transparent objects. We used a common-path QPI configuration to investigate the coherent phase mapping of polystyrene micro-beads and breast cancer cells (MCF-7) under different degrees of coherent speckles. The proposed speckle reduction method could provide an avenue for enhancing lateral resolution and suppressing coherent artifacts of the phase images from QPI.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
White-light quantitative phase imaging unit

YoonSeok Baek, KyeoReh Lee, Jonghee Yoon, Kyoohyun Kim, and YongKeun Park
Opt. Express 24(9) 9308-9315 (2016)

Phase calibration target for quantitative phase imaging with ptychography

T. M. Godden, A. Muñiz-Piniella, J. D. Claverley, A. Yacoot, and M. J. Humphry
Opt. Express 24(7) 7679-7692 (2016)

Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination

Pierre Bon, Sherazade Aknoun, Serge Monneret, and Benoit Wattellier
Opt. Express 22(7) 8654-8671 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  2. C. Depeursinge, Digital Holography and Three-Dimensional Display, Princiles and Applications, T.-C. Poon, ed. (Springer, 2006).
  3. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  4. D. Zicha and G. A. Dunn, “An image-processing system for cell bahaviour studies in subconfluent cultures,” J. Microsc. 179(1), 11–21 (1995).
    [Crossref]
  5. W. C. Warger and C. A. DiMarzio, “Computational signal-to-noise ratio analysis for optical quadrature microscopy,” Opt. Express 17(4), 2400–2422 (2009).
    [Crossref] [PubMed]
  6. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  7. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  8. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
    [Crossref] [PubMed]
  9. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [Crossref] [PubMed]
  10. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  11. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
    [Crossref] [PubMed]
  12. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
    [Crossref] [PubMed]
  13. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  14. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [Crossref] [PubMed]
  15. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [Crossref] [PubMed]
  16. M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
    [Crossref] [PubMed]
  17. A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
    [Crossref]
  18. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [Crossref] [PubMed]
  19. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [Crossref] [PubMed]
  20. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [Crossref] [PubMed]
  21. Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
    [Crossref] [PubMed]
  22. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [Crossref] [PubMed]
  23. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref] [PubMed]
  24. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  25. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156 (1982).
    [Crossref]
  26. P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23(7), 8773–8787 (2015).
    [Crossref] [PubMed]

2016 (2)

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2012 (2)

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

2011 (4)

2010 (3)

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
[Crossref] [PubMed]

2009 (3)

2006 (2)

2005 (1)

2004 (2)

1999 (1)

1995 (1)

D. Zicha and G. A. Dunn, “An image-processing system for cell bahaviour studies in subconfluent cultures,” J. Microsc. 179(1), 11–21 (1995).
[Crossref]

1982 (1)

Auth, T.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Badizadegan, K.

Baek, Y.

Best, C. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Bhaduri, B.

Braun, P. V.

Carney, P. S.

Chi, J. T.

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Dasari, R.

Dasari, R. R.

Deflores, L. P.

DiMarzio, C. A.

Ding, H.

Dubois, F.

Dunn, G. A.

D. Zicha and G. A. Dunn, “An image-processing system for cell bahaviour studies in subconfluent cultures,” J. Microsc. 179(1), 11–21 (1995).
[Crossref]

Feld, M. S.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Giacomelli, M. G.

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

Gillette, M. U.

Girshovitz, P.

Gov, N. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Ikeda, T.

Ina, H.

Istasse, E.

Iwai, H.

Joannes, L.

Kim, K.

Kobayashi, S.

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Lee, K.

Lee, K. J.

Legros, J. C.

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Marks, D. L.

Matthews, T. E.

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

Mihi, A.

Millet, L.

Millet, L. J.

Minetti, C.

Mir, M.

Monnom, O.

Park, H. S.

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Park, Y.

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Pham, H.

Popescu, G.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Prasanth, S. G.

Requena, M. L. N.

Rinehart, M. T.

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
[Crossref] [PubMed]

Robles, F. E.

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

Rogers, J.

Safran, S. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Shaked, N. T.

Shen, Z.

Suresh, S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Takeda, M.

Unarunotai, S.

Vaughan, J. C.

Walzer, K. A.

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Wang, Z.

Warger, W. C.

Wax, A.

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
[Crossref] [PubMed]

Yang, T. D.

Yaqoob, Z.

Yoon, J.

Zhu, Y.

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

Zicha, D.

D. Zicha and G. A. Dunn, “An image-processing system for cell bahaviour studies in subconfluent cultures,” J. Microsc. 179(1), 11–21 (1995).
[Crossref]

Adv. Opt. Photonics (1)

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photonics 4(3), 322 (2012).
[Crossref]

Appl. Opt. (2)

J. Microsc. (1)

D. Zicha and G. A. Dunn, “An image-processing system for cell bahaviour studies in subconfluent cultures,” J. Microsc. 179(1), 11–21 (1995).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (9)

P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23(7), 8773–8787 (2015).
[Crossref] [PubMed]

W. C. Warger and C. A. DiMarzio, “Computational signal-to-noise ratio analysis for optical quadrature microscopy,” Opt. Express 17(4), 2400–2422 (2009).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
[Crossref] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express 19(21), 19907–19918 (2011).
[Crossref] [PubMed]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref] [PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Opt. Lett. (7)

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

M. T. Rinehart, H. S. Park, K. A. Walzer, J. T. Chi, and A. Wax, “Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy,” Sci. Rep. 6, 24461 (2016).
[Crossref] [PubMed]

Other (2)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

C. Depeursinge, Digital Holography and Three-Dimensional Display, Princiles and Applications, T.-C. Poon, ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Speckle suppression in quantitative phase imaging (QPI). (a) Conceptual image of speckle suppression using an optical diffuser and a representative example of speckle suppressed interferogram of a 10 μm polystyrene bead. (b) Optical system layout with an optical diffuser in the illumination part. LD: laser diode, C: collimator, OA: optical attenuator, I: iris, L: plano-convex lens, OD: optical diffuser, O: objective, M: mirror, TL: tube lens, HWP: half-wave plate, WP: Wollaston prism, P: polarizer, CCD: charged-couple device.

Fig. 2
Fig. 2

(a) QPI of a polystyrene micro-bead (D = 10 μm) immersed in microscope oil. (b) Algorithm for quantitative phase map reconstruction from the interferogram. (c) Algorithm for FFT line extraction in logarithmic and linear scale.

Fig. 3
Fig. 3

QPI interferogram of a 10 μm bead with (a-1) no SD/MD, (a-2) DA = 1°, (a-3) DA = 6°, (a-4) DA = 12° in the illumination path. FFT plot of the interferogram with (b-1) no SD/MD, (b-2) DA = 1°, (b-3) DA = 6°, (b-4) DA = 12°. Topographic phase maps with (c-1) no SD/MD, (c-2) DA = 1°, (c-3) DA = 6°, (c-4) DA = 12°. (d) Sectioned 2D phase map of the micro-bead under various illuminations.

Fig. 4
Fig. 4

Spectral analysis of the speckle reduction in terms of the background noise, carrier linewidth, and signal-to-noise ratio. (a) Schematic model for the analysis. (b) FFT line profile of the interferogram under various illuminations. Dashed rectangle shows the region of interest. (c) FFT line profiles of QPI carriers for broad and narrow peaks. The inset shows the magnified view of the narrow coherent peak. (d) FFT line profile of the broad pedestal in linear scale. (e) FFT line profile of the narrow peak in linear scale. (f) Background noise level comparison. (g) Broad pedestal linewidth comparison. (h) Narrow coherent peak linewidth comparison. (i) SNR comparison.

Fig. 5
Fig. 5

Comparison of background spatial phase noise in various illumination with no sample in the FOV. (a1-4) Interferogram of the background area obtained using the QPI setup for various illumination. (b1-4) FFT plot of the interferogram for various illuminations. (c1-4) 2D spatial phase map of the background obtained using the QPI setup for various illuminations. Various illuminations: 1) No SD/MD, 2) SD/MD, DA = 1°, 3) SD/MD, DA = 6°,4) SD/MD, DA = 12°.

Fig. 6
Fig. 6

(a) QPI images of a breast cancer cell (MCF-7) with various illuminations. (b) Phase maps of the cancer cell. (c) Magnified topographic phase maps showing the higher resolution with the high DA.

Tables (1)

Tables Icon

Table 1 Specification of the electroactive rotational optical diffusers used in this investigation

Metrics