Abstract

The development of new photonic materials that combine diverse optical capabilities is needed to boost the integration of different quantum and classical components within the same chip. Amongst all candidates, the superior optical properties of cubic silicon carbide (3C SiC) could be merged with its crystalline point defects, enabling single photon generation, manipulation and light-matter interaction on a single device. The development of photonics devices in SiC has been limited by the presence of the silicon substrate, over which thin crystalline films are heteroepitaxially grown. By employing a novel approach in the material fabrication, we demonstrate grating couplers with coupling efficiency reaching −6 dB, sub-µm waveguides and high intrinsic quality factor (up to 24,000) ring resonators. These components are the basis for linear optical networks and essential for developing a wide range of photonics component for non-linear and quantum optics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal cavities in cubic (3C) polytype silicon carbide films

Marina Radulaski, Thomas M. Babinec, Sonia Buckley, Armand Rundquist, J Provine, Kassem Alassaad, Gabriel Ferro, and Jelena Vučković
Opt. Express 21(26) 32623-32629 (2013)

High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler

Amir H. Hosseinnia, Amir H. Atabaki, Ali A. Eftekhar, and Ali Adibi
Opt. Express 23(23) 30297-30307 (2015)

Potential material for fabricating optical mirrors: polished diamond coated silicon carbide

Xinchang Wang, Chengchuan Wang, Xiaotian Shen, and Fanghong Sun
Appl. Opt. 56(14) 4113-4122 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).
  3. F. De Leonardis, R. A. Soref, and V. M. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep.7 (2017).
    [Crossref] [PubMed]
  4. I. Wu and G. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
    [Crossref]
  5. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199–2212 (2012).
    [Crossref]
  6. C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
    [Crossref] [PubMed]
  7. X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
    [Crossref]
  8. A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
    [Crossref]
  9. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
    [Crossref] [PubMed]
  10. F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
    [Crossref] [PubMed]
  11. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
    [Crossref]
  12. G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
    [Crossref]
  13. V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
    [Crossref]
  14. N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
    [Crossref]
  15. C.-M. Zetterling, ed., Process Technology for Silicon Carbide Devices (Institution of Engineering and Technology, 2002).
    [Crossref]
  16. S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
    [Crossref]
  17. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
    [Crossref] [PubMed]
  18. M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
    [Crossref]
  19. R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
    [Crossref]
  20. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
    [Crossref]
  21. X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
    [Crossref]
  22. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
    [Crossref] [PubMed]
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  24. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007).
    [Crossref] [PubMed]
  25. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using-quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.5 (2014).
    [Crossref]
  26. X. Lu, J. Y. Lee, P.X.-L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
    [Crossref] [PubMed]
  27. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High q sic microresonators,” Opt. Express 21, 16882–16887 (2013).
    [Crossref] [PubMed]
  28. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  29. A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure soi platform to 0.5 db coupling efficiency,” Opt. Express 23, 16289–16304 (2015).
    [Crossref] [PubMed]
  30. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
    [Crossref] [PubMed]
  31. K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
    [Crossref]
  32. P. Rabiei, W. Steier, C. Zhang, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [Crossref]
  33. G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
    [Crossref]
  34. S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
    [Crossref] [PubMed]
  35. D. O. Bracher and E. L. Hu, “Fabrication of High- Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
    [Crossref] [PubMed]
  36. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
    [Crossref]

2016 (2)

G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

2015 (3)

2014 (4)

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref] [PubMed]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

2013 (6)

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

X. Lu, J. Y. Lee, P.X.-L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref] [PubMed]

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High q sic microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

2009 (2)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

2008 (1)

I. Wu and G. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

2007 (3)

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

2002 (2)

P. Rabiei, W. Steier, C. Zhang, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

2000 (1)

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
[Crossref]

1996 (1)

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

1991 (2)

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
[Crossref]

1987 (1)

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

Aitchison, J. S.

Andreani, L. C.

Anzalone, R.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Asano, T.

Astakhov, G. V.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Attolini, G.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Aversa, L.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Awschalom, D. D.

G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Baranov, P. G.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Berroth, M.

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Bosi, M.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Bozzola, A.

Bracher, D. O.

D. O. Bracher and E. L. Hu, “Fabrication of High- Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref] [PubMed]

Bratus’, V.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using-quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.5 (2014).
[Crossref]

Bristow, A. D.

Buckley, B. B.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Buffagni, E.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Burghartz, J.

Butschke, J.

Calusine, G.

G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Camarda, M.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Cardenas, J.

Cardoso, J. V. D. M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Carroll, L.

Castelletto, S.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Chak, P.

Chen, W.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Clark, A. S.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Collins, M. J.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Combrié, S.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Cristiani, I.

Cristofolini, L.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

D’arrigo, G.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Dalton, L.

Davanco, M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

De Leonardis, F.

F. De Leonardis, R. A. Soref, and V. M. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep.7 (2017).
[Crossref] [PubMed]

De Rossi, A.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Dobrovitski, V. V.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Dunning, J.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

Dutt, A.

Dyakonov, V.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Eggleton, B. J.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Evans, A. G.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
[Crossref]

Falk, A. L.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Feng, P. X.-L.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Feng, P.X.-L.

Ferrari, C.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Frigeri, C.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Fuchs, F.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gaeta, A. L.

Gali, a.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Gerace, D.

Guha, B.

Guo, G.

I. Wu and G. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

Hallin, C.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Helt, L. G.

Hu, E. L.

D. O. Bracher and E. L. Hu, “Fabrication of High- Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref] [PubMed]

Husko, C. A.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Irvine, K. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

Ivády, V.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Iyer, R.

Jackson, K. M.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

Janzen, E.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Jeon, S.

Johnson, B. C.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Koehl, W. F.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Kordina, O.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Krauss, T. F.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Kunze, A.

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using-quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.5 (2014).
[Crossref]

La Via, F.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Lau, R. K.

Lee, J. Y.

Lehoucq, G.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Letzkus, F.

Li, Q.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Lin, Q.

Lindstrom, J.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Lipson, M.

Liscidini, M.

Liu, J.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Liu, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Locke, C.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Lu, X.

Matsunami, H.

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

Mehregany, M.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

Melnik, R.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Mirin, R.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Mokhov, E. N.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Monemar, B.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Nam, S. W.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Negri, M.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Nishino, S.

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

Noda, S.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Ohshima, T.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Okawachi, Y.

Okulov, S.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Ono, H.

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

Passaro, V. M.

F. De Leonardis, R. A. Soref, and V. M. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep.7 (2017).
[Crossref] [PubMed]

Phare, C. T.

Poitras, C. B.

Politi, A.

G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Rabiei, P.

Reed, G. T.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
[Crossref]

Rey, I. H.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Rimoldi, T.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Rodionov, V.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Rooks, M.

Saddow, S.

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Sapienza, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Sekaric, L.

Shah, S. Y.

Shanina, B.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Sharpe, W. N.

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Singh, M.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Sipe, J. E.

Smirl, A. L.

Smoliy, M.

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using-quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.5 (2014).
[Crossref]

Soltamov, V. a.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Son, N.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Song, B.-S.

Soref, R. A.

F. De Leonardis, R. A. Soref, and V. M. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep.7 (2017).
[Crossref] [PubMed]

Sorman, E.

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

Spencer, M. G.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
[Crossref]

Srinivasan, K.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Stavrias, N.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Steier, W.

Suhara, H.

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Tanaka, Y.

Tang, X.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
[Crossref]

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

Tatti, R.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Umeda, T.

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Upham, J.

van Driel, H. M.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Väth, S.

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Verma, V.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Verucchi, R.

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

Vlasov, Y.

Vogel, W.

Vonsovici, A.

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Wongchotigul, K.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
[Crossref]

Wu, I.

I. Wu and G. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

Xia, F.

Xiong, C.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yamada, S.

Yang, Z.

Yu, M.

Zaoui, W. S.

Zhang, C.

Zhang, C.-Z.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

Zhang, D.

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

Zhang, M.

Zorman, C. a.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

Appl. Phys. Lett. (3)

X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, “Linear electro-optic effect in cubic silicon carbide,” Appl. Phys. Lett. 59, 1938 (1991).
[Crossref]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917 (1991).
[Crossref]

G. Calusine, A. Politi, and D. D. Awschalom, “Silicon carbide photonic crystal cavities with integrated color centers,” Appl. Phys. Lett. 105, 011123 (2014).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µ m square si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

J. Appl. Phys. (2)

N. Son, E. Sorman, W. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzen, and J. Lindstrom, “Dominant recombination center in electron-irradiated 3c sic,” J. Appl. Phys. 79, 3784–3786 (1996).
[Crossref]

S. Nishino, H. Suhara, H. Ono, and H. Matsunami, “Epitaxial growth and electric characteristics of cubic sic on silicon,” J. Appl. Phys. 61, 4889–4893 (1987).
[Crossref]

J. Crystal Growth (1)

M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, “Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates,” J. Crystal Growth 383, 84–94 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromechanical Systems (1)

K. M. Jackson, J. Dunning, C. A. Zorman, M. Mehregany, and W. N. Sharpe, “Mechanical properties of epitaxial 3c silicon carbide thin films,” J. Microelectromechanical Systems 14, 664–672 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Journal of Microelectromechanical Systems (1)

R. Anzalone, G. D’arrigo, M. Camarda, C. Locke, S. Saddow, and F. La Via, “Advanced residual stress analysis and fem simulation on heteroepitaxial 3c–sic for mems application,” Journal of Microelectromechanical Systems 20, 745–752 (2011).
[Crossref]

Mater. Sci. Semiconductor Processing (1)

A. Vonsovici, G. T. Reed, and A. G. Evans, “β-SiC-on insulator waveguide structures for modulators and sensor systems,” Mater. Sci. Semiconductor Processing 3, 367–374 (2000).
[Crossref]

Nano Lett. (1)

D. O. Bracher and E. L. Hu, “Fabrication of High- Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC,” Nano Lett. 15, 6202–6207 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. a. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat. Commun. 4, 1819 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, a. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Nat. Photonics (2)

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Photonics Technol. Lett. (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” Photonics Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Phys. Rev. Appl. (1)

G. Calusine, A. Politi, and D. D. Awschalom, “Cavity-Enhanced Measurements of Defect Spins in Silicon Carbide,” Phys. Rev. Appl. 6, 014019 (2016).
[Crossref]

Phys. Rev. B (1)

I. Wu and G. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

Physica B: Condensed Matter (1)

V. Bratus’, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, “A new spin one defect in cubic SiC,” Physica B: Condensed Matter 404, 4739–4741 (2009).
[Crossref]

Sci. Rep. (2)

F. Fuchs, V. a. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Other (4)

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “A heterogeneous iii-v/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices,” arXiv preprint arXiv:1611.07654 (2016).

F. De Leonardis, R. A. Soref, and V. M. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep.7 (2017).
[Crossref] [PubMed]

C.-M. Zetterling, ed., Process Technology for Silicon Carbide Devices (Institution of Engineering and Technology, 2002).
[Crossref]

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using-quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nat. Commun.5 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized electric field intensity for the first TE mode in SM (a) and MM (b) waveguides.

Fig. 2
Fig. 2

(a) Schematic of an apodized grating coupler. (b) Coupling efficiency versus wavelength from 2D-FDTD simulation of grating couplers optimized for SM and MM waveguides.

Fig. 3
Fig. 3

Schematic representation of the fabrication process (a)–(f). 45° SEM view of a MM ring resonator (g).

Fig. 4
Fig. 4

Optical microscope image of the sample layout (a). Experimental characterization of fabricated SM and MM grating coupler together with mode converter (b).

Fig. 5
Fig. 5

Measured high-Q resonance of different ring resonators (black dots) and lorentzian best-fit (red line): 20 µm ring realized with SM waveguide (a), 10 and 20 µm ring realized with MM waveguides (b and c, respectively). All the rings are in the undercoupled condition.

Tables (1)

Tables Icon

Table 1 Positions and sizes resulting from the apodization algorithm for the MM structure, with a refractive index of 2.6 and an etch depth of 320 nm

Metrics