Abstract

The development of new substrates for surface-enhanced spectroscopy is primarily motivated by the ability to design such substrates to provide the maximum signal enhancement. In this paper, we theoretically design and investigate a crisscross dimer array as a plasmonic substrate for enhancing coherent anti-Stokes Raman scattering (CARS). The plasmonic film-crisscross dimer array system can excite multiple resonances at optical frequencies. By properly designing structure parameters, three plasmon resonances with large field enhancements and same spatial hot spot regions can spectrally match with the pump, Stokes and anti-Stokes beams, respectively. The CARS signals are strongly enhanced by multi-resonance plasmon field enhancements. The estimated CARS factor can reach as high order as ~1016 over conventional CARS without the plasmonic substrate.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering

Tae-Woong Koo, Selena Chan, and Andrew A. Berlin
Opt. Lett. 30(9) 1024-1026 (2005)

Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation

Vishnu Vardhan Krishnamachari and Eric Olaf Potma
J. Opt. Soc. Am. A 24(4) 1138-1147 (2007)

Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme

Dae Sik Choi, Chang Ho Kim, Taegon Lee, Sanghee Nah, Hanju Rhee, and Minhaeng Cho
Opt. Express 27(16) 23558-23575 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
    [Crossref]
  2. C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
    [Crossref] [PubMed]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  4. K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
    [Crossref] [PubMed]
  5. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
    [Crossref] [PubMed]
  6. W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, “A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS),” Appl. Spectrosc. 31(4), 253–271 (1977).
    [Crossref]
  7. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  8. B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
    [Crossref]
  9. X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
    [Crossref]
  10. H. Chew, D. S. Wang, and M. Kerker, “Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres,” J. Opt. Soc. Am. B 1(1), 56–66 (1984).
    [Crossref]
  11. E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
    [Crossref]
  12. N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
    [Crossref]
  13. V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
    [Crossref]
  14. C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
    [Crossref]
  15. D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
    [Crossref] [PubMed]
  16. C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
    [Crossref] [PubMed]
  17. G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
    [Crossref] [PubMed]
  18. J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6, 20777 (2016).
    [Crossref] [PubMed]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  21. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
    [Crossref] [PubMed]
  22. J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
    [Crossref]
  23. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
    [Crossref] [PubMed]
  24. P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
    [Crossref]
  25. Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
    [Crossref] [PubMed]
  26. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [Crossref] [PubMed]
  27. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
    [Crossref] [PubMed]

2016 (1)

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6, 20777 (2016).
[Crossref] [PubMed]

2014 (3)

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
[Crossref]

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

2013 (2)

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

2012 (2)

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

2011 (4)

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[Crossref] [PubMed]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

2010 (4)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
[Crossref]

2009 (1)

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

2008 (1)

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2004 (1)

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

2002 (1)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1994 (1)

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

1984 (1)

1977 (1)

Addison, C. J.

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Ballmann, C. W.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

Blades, M. W.

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Brolo, A. G.

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Cai, G. W.

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Cao, Y. C.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Cava Diaz, G. I.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Chen, D. X.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Chew, H.

Chu, Y.

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[Crossref] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Corrigan, T. D.

Cronin, S. B.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[Crossref] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Dementjev, A.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Dietzek, B.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Ding, P.

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6, 20777 (2016).
[Crossref] [PubMed]

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Dovbeshko, G.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Drew, H. D.

Echternach, P. M.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Fan, C.

Fan, C. Z.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Fedorov, V.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Fesenko, O.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Flachenecker, G.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Funk, J. M.

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
[Crossref]

Harvey, A. B.

Hashimoto, M.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

Hayazawa, N.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

He, J.

He, J. N.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hu, W. Q.

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Hua, X.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Ichimura, T.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

Inouye, Y.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

Jha, P. K.

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Jin, R.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kaminski, C. F.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

Karpicz, R.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Kawata, S.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

Kerker, M.

Kiefer, W.

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

Kolb, P. W.

Konorov, S. O.

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Krafft, C.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Li, H.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Li, L.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Liang, E.

Liang, E. J.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

Liu, X. M.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Liu, Z.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Mahajan, S.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

Materny, A.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

McDonald, J. R.

Mirkin, C. A.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Muller, R. E.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Munusamy, E.

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Namboodiri, M.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Namboodiri, V.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Nibler, J. W.

Oppermann, M.

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
[Crossref]

Pavaskar, P.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Phaneuf, R. J.

Popp, J.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Posudievsky, O. Y.

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Psaltis, D.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
[Crossref]

Schmadel, D. C.

Schmitt, M.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Scully, M. O.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Shi, K.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Sinyukov, A. M.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Sokolov, A. V.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Steuwe, C.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

Sushkov, A. B.

Theiss, J.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Tian, Y. Z.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Tolles, W. M.

Turner, R. F. B.

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Voronine, D. V.

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Wang, D.

Wang, D. S.

Wang, J.

Wang, J. Q.

B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
[Crossref]

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

Wang, K.

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Weippert, A.

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

Welch, G.

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Wheeler, S. E.

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, Q.

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Xue, Q.

Xue, Q. Z.

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Yuan, B. H.

B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
[Crossref]

Zhou, W. J.

B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
[Crossref]

Zhu, S.

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6, 20777 (2016).
[Crossref] [PubMed]

Zhu, W.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

ACS Nano (1)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

E. J. Liang, A. Weippert, J. M. Funk, A. Materny, and W. Kiefer, “Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering,” Chem. Phys. Lett. 227(1–2), 115–120 (1994).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

J. Appl. Phys. (1)

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[Crossref]

J. Biomed. Opt. (1)

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

J. Opt. (3)

B. H. Yuan, W. J. Zhou, and J. Q. Wang, “Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications,” J. Opt. 16(10), 105013 (2014).
[Crossref]

J. Q. Wang, X. M. Liu, L. Li, J. N. He, C. Z. Fan, Y. Z. Tian, P. Ding, D. X. Chen, Q. Z. Xue, and E. J. Liang, “Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair,” J. Opt. 15(10), 105003 (2013).
[Crossref]

P. Ding, E. J. Liang, G. W. Cai, W. Q. Hu, C. Z. Fan, and Q. Z. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response,” J. Phys. Chem. C 113(9), 3586–3592 (2009).
[Crossref]

Nano Lett. (2)

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11(12), 5339–5343 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

G. Dovbeshko, O. Fesenko, A. Dementjev, R. Karpicz, V. Fedorov, and O. Y. Posudievsky, “Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide,” Nanoscale Res. Lett. 9(1), 263 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

X. Hua, D. V. Voronine, C. W. Ballmann, A. M. Sinyukov, A. V. Sokolov, and M. O. Scully, “Nature of surface-enhanced coherent Raman scattering,” Phys. Rev. A 89(4), 043841 (2014).
[Crossref]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104(9), 093902 (2010).
[Crossref] [PubMed]

Prog. Energy Combust. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energy Combust. 36(2), 280–306 (2010).
[Crossref]

Sci. Rep. (2)

J. He, C. Fan, P. Ding, S. Zhu, and E. Liang, “Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements,” Sci. Rep. 6, 20777 (2016).
[Crossref] [PubMed]

D. V. Voronine, A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully, “Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes,” Sci. Rep. 2, 891 (2012).
[Crossref] [PubMed]

Science (1)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

V. Namboodiri, M. Namboodiri, G. I. Cava Diaz, M. Oppermann, G. Flachenecker, and A. Materny, “Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine,” Vib. Spectrosc. 56(1), 9–12 (2011).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Principal sketch of the designed plasmonic coupled system consisting of two identical metallic crisscrosses arrays and supported by a 30 nm thickness of SiO2 spacer and a 110 nm thickness of silver substrate. The SiO2 and silver regions are colored in grey and purple, respectively. (b) Definition of the geometrical parameters in the elementary unit cell with a square lattice and a pair of crisscrosses. The propagation direction of the incident light wave is along the z-axis, with the electric and magnetic fields along the x- and y-axes, respectively. The orange spot in the gap center of crisscross dimer indicates the probing location of electric field.
Fig. 2
Fig. 2 The simulated absorption spectra (a) and corresponding E field enhancement (b) mapping for different lattice periods and fixed a = 100 nm and b = 280 nm. The E field enhancement is the absolute value ratio of the x component of electric field to the incident electric field (i.e. |E x /E0|). E0 is the incident electric field with the linear polarization in the x-direction. The probing location of electric field locates in the gap center of crisscross dimer shown in Fig. 1(b) (orange spot).
Fig. 3
Fig. 3 The electric field (a, b) and current (c, d) distributions for the A (a, c) and L (b, d) plasmon modes in the x-y plane while the lattice period is fixed to be 540 nm. The dashed lines in (a) and (b) indicate the directions of current flow induced by metal crisscross dimer at different resonance modes. Scale bar, 100 nm.
Fig. 4
Fig. 4 The simulated absorption spectra (a) and corresponding E field enhancements (b) mapping for different arm length b of crisscross dimer. The other parameters: P = 530 nm, a = 100 nm, and d = 14 nm. The E field enhancement is the absolute value ratio of the x component of electric field to the incident electric field (i.e. |E x /E0|). E0 is the incident electric field with the linear polarization in the x-direction. The probing location of electric field locates in the gap center of crisscross dimer shown in Fig. 1(b) (orange spot).
Fig. 5
Fig. 5 The simulated reflective spectra (black curve) and corresponding E field enhancement (red curve) for P = 640 nm, a = 102 nm, b = 258 nm, and d = 14 nm. E0 is the incident electric field with the linear polarization in the x-direction. E x is the x component of near field probed in the gap center of crisscross dimer in the x-y plane.
Fig. 6
Fig. 6 The E x (a~c) and E z (d~f) field enhancement distributions at the resonance wavelengths of λ1 = 687 nm (a, d), λ2 = 800 nm (b, e), and λ3 = 957 nm (c, f). The near field E x and E z are evaluated in the x-y and x-z planes, respectively. Scale bar, 100 nm.
Fig. 7
Fig. 7 The simulated reflective spectra with the different configuration parameters. The transverse arm length of the crisscross is fixed to be a = 102 nm, and the other configuration parameters are listed in the following Table.
Fig. 8
Fig. 8 (a) The simulated reflective spectra (black curve) and corresponding E field enhancement (|Ex/E0|, red curve) for P = 530 nm, a = 76 nm, b = 212 nm, and d = 14 nm. E0 is the incident light with the linear polarization in the x-direction, and E x is the x component of near field probed in the gap center of crisscross dimer in the x-y plane. (b) Corresponding E field patterns in the x-y plane at the three resonance frequencies: λ1 = 579 nm, λ2 = 661 nm, and λ3 = 769 nm. Scale bar, 100 nm.

Tables (1)

Tables Icon

Table 1 Evaluation of the SECARS EF with the different configuration parameters a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I C A R S | χ ( 3 ) | 2 I P 2 I S
G S E C A R S = | E ( ω P ) / E 0 ( ω P ) | 4 | E ( ω S ) / E 0 ( ω S ) | 2 | E ( ω A S ) / E 0 ( ω A S ) | 2 = g P 4 g S 2 g A S 2
| k s p p | = | k / / + i G x + j G y |
λ i 2 + j 2 = P ε m ε d ε m + ε d

Metrics