Abstract

We fabricated a magneto-optical (MO) isolator with a TE mode nonreciprocal phase shift. The isolator is based on a Mach–Zehnder interferometer composed of 3-dB directional couplers, a reciprocal phase shifter, and a nonreciprocal phase shifter. To realize TE mode operation in the optical isolator, we designed a novel waveguide structure composed of a hydrogenated amorphous silicon waveguide with an asymmetric MO garnet lateral clad on a garnet substrate. The isolator operation is successfully demonstrated in a fabricated device showing the different transmittances between forward and backward directions. The maximum isolation of the fabricated isolator is 17.9 dB at a wavelength of 1561 nm for the TE mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input

Ryusuke Yamaguchi, Yuya Shoji, and Tetsuya Mizumoto
Opt. Express 26(16) 21271-21278 (2018)

Waveguide magneto-optical devices for photonics integrated circuits [Invited]

Yuya Shoji and Tetsuya Mizumoto
Opt. Mater. Express 8(8) 2387-2394 (2018)

Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides

Richard L. Espinola, Tomoyuki Izuhara, Ming-Chun Tsai, Richard M. Osgood, and Horst Dötsch
Opt. Lett. 29(9) 941-943 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
    [Crossref]
  2. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
    [Crossref]
  3. S. Yamamoto and T. Makimono, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
    [Crossref]
  4. F. Auracher and H. H. Witte, “A mew design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
    [Crossref]
  5. T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech. MTT-30(6), 922–925 (1982).
    [Crossref]
  6. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
    [Crossref] [PubMed]
  7. Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
    [Crossref]
  8. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
    [Crossref]
  9. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  10. T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
    [Crossref] [PubMed]
  11. N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
    [Crossref]
  12. Y. Shoji, I.-W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
    [Crossref]
  13. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
    [Crossref]
  14. A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference, Los Angeles, 2015, W2A.7.
    [Crossref]
  15. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, and T. Popkov, “Analysis of polarization independent Mach-Zehnder-type integrated optical isolator,” J. Lightwave Technol. 17(7), 1200–1205 (1999).
    [Crossref]
  16. P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
    [Crossref] [PubMed]
  17. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
    [Crossref]
  18. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
    [Crossref]

2014 (3)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref] [PubMed]

2013 (2)

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
[Crossref] [PubMed]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

2011 (2)

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2007 (1)

2000 (1)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

1999 (2)

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, and T. Popkov, “Analysis of polarization independent Mach-Zehnder-type integrated optical isolator,” J. Lightwave Technol. 17(7), 1200–1205 (1999).
[Crossref]

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

1997 (1)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

1991 (1)

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

1982 (1)

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech. MTT-30(6), 922–925 (1982).
[Crossref]

1975 (1)

F. Auracher and H. H. Witte, “A mew design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[Crossref]

1974 (1)

S. Yamamoto and T. Makimono, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

Abe, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Amemiya, T.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Arai, S.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Atsumi, Y.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Auracher, F.

F. Auracher and H. H. Witte, “A mew design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[Crossref]

Baets, R.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Bahlmann, N.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Bowers, J. E.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
[Crossref] [PubMed]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

Di Pasquale, F.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dotsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, and T. Popkov, “Analysis of polarization independent Mach-Zehnder-type integrated optical isolator,” J. Lightwave Technol. 17(7), 1200–1205 (1999).
[Crossref]

Fujie, A.

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference, Los Angeles, 2015, W2A.7.
[Crossref]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

Furuyama, H.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Ghosh, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Gomi, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Goto, T.

Hertel, P.

Hsieh, I.-W.

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Huang, D.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

Inoue, M.

Inoue, Y.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Ishii, M.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kang, J.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Kim, D. H.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kubota, E.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

Lohmeyer, M.

Makimono, T.

S. Yamamoto and T. Makimono, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Mizumoto, T.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Y. Shoji, I.-W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
[Crossref]

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech. MTT-30(6), 922–925 (1982).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference, Los Angeles, 2015, W2A.7.
[Crossref]

Naito, Y.

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech. MTT-30(6), 922–925 (1982).
[Crossref]

Nishiyama, N.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Oda, M.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Onbasli, M. C.

Osgood, R. M.

Y. Shoji, I.-W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

Pintus, P.

P. Pintus, F. Di Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
[Crossref] [PubMed]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

Popkov, T.

Roelkens, G.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Ross, C. A.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Shimokozono, M.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Shintaku, T.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Shirato, Y.

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

Shoji, Y.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

Y. Shoji, I.-W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007).
[Crossref]

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference, Los Angeles, 2015, W2A.7.
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

Singh, V.

Sugimoto, N.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Tate, A.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

Terui, H.

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

Witte, H. H.

F. Auracher and H. H. Witte, “A mew design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[Crossref]

Yamamoto, S.

S. Yamamoto and T. Makimono, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

Zhang, C.

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

Zhuromskyy, O.

Appl. Phys. Lett. (1)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[Crossref]

IEEE Photonics J. (1)

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photonics J. 5(3), 6601108 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photonics Technol. Lett. 11(3), 355–357 (1999).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Polarization-independent waveguide optical isolator based on nonreciprocal phase shift,” IEEE Photonics Technol. Lett. 12(11), 1510–1512 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

T. Mizumoto and Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microw. Theory Tech. MTT-30(6), 922–925 (1982).
[Crossref]

J. Appl. Phys. (1)

S. Yamamoto and T. Makimono, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (3)

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50(12R), 120208 (2011).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” Jpn. J. Appl. Phys. 70(11), 7065–7067 (1991).
[Crossref]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Commun. (1)

F. Auracher and H. H. Witte, “A mew design for an integrated optical isolator,” Opt. Commun. 13(4), 435–438 (1975).
[Crossref]

Opt. Express (2)

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref] [PubMed]

Other (2)

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Silicon microring isolator with large optical isolation and low loss,” in Optical Fiber Communication Conference, Anaheim, 2016, Th1K.2.
[Crossref]

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference, Los Angeles, 2015, W2A.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Waveguide cross section of (a) conventional and (b) proposed structures for providing NPS.
Fig. 2
Fig. 2 Schematic of a TE mode isolator.
Fig. 3
Fig. 3 NPS calculation result.
Fig. 4
Fig. 4 Microscopic images of (a) a fabricated isolator and (b) a nonreciprocal phase shifter; (c) schematic of connecting taper waveguides.
Fig. 5
Fig. 5 Cross section of the nonreciprocal phase shifter.
Fig. 6
Fig. 6 Measurement setup.
Fig. 7
Fig. 7 Measured transmittance of the fabricated isolator.
Fig. 8
Fig. 8 Electric field distribution along the x direction of the TE mode.
Fig. 9
Fig. 9 Proposed waveguide structure for a polarization-independent optical isolator.
Fig. 10
Fig. 10 Calculated nonreciprocal phase shift for the fundamental TE and TM modes.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

θ RPS =β L RPS = 2 n eq π λ L RPS .
L RPS = ( m+0.25 )λ  n eq .
Δ β TE = 2ω ε 0 P Re( jγ E x * E z )dxdy.
P= 1 2 ( E× H * + E * ×H ) z dxdy,
Δ ε ˜ =( 0 0 jγ 0 0 0 jγ 0 0    ).
γ= nλ θ F π ,
L NPS = π 2 Δ β TE .
θ NPS = 2πΔλ FSR .
Δ β TE = 2ω ε 0 P Re( jγ E x * E z / 2 )dxdy,
Δ β TM = 2ω ε 0 P Re( jγ E y * E z / 2 )dxdy,
Δ ε ˜ =( 0 0 jγ/ 2 0 0 jγ/ 2 jγ/ 2 jγ/ 2 0    ),

Metrics