Abstract

A tangencypoint method (TPM) is presented to derive the thickness and optical constants of chalcogenide thin films from their transmission spectra. It solves the problem of the abnormal value of thickness in the strong absorption region obtained by Swanepoel method. The accuracy of the thickness and refractive index is better than 0.5% by using this method. Moreover, comparing with Swanepoel method by using the same simulation and experimental data from the transmission spectrum, the accuracy of the thickness and refractive index obtained by the TPM is higher in the strong absorption region. Finally the dispersion and absorption coefficient of the chalcogenide films are obtained based on the experimental data of the transmission spectrum by using the TPM.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extension of the Swanepoel method for obtaining the refractive index of chalcogenide thin films accurately at an arbitrary wavenumber

Youliang Jin, Baoan Song, Changgui Lin, Peiqing Zhang, Shixun Dai, TieFeng Xu, and Qiuhua Nie
Opt. Express 25(25) 31273-31280 (2017)

Determination of properties of wedged, nonuniformly thick, and absorbing thin films by using a new numerical method

Jonghoon Baek, Desiderio Kovar, John W. Keto, and Michael F. Becker
Appl. Opt. 45(7) 1627-1639 (2006)

References

  • View by:
  • |
  • |
  • |

  1. O. Stenzel, Optical Coatings: Material Aspects in Theory and Practice (Springer, 2014).
  2. J. W. Amp, Optical Properties of Condensed Matter and Applications (John Wiley & Sons, 2006).
  3. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
    [Crossref]
  4. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
    [Crossref]
  5. M. S. Alias, I. Dursun, M. I. Saidaminov, E. M. Diallo, P. Mishra, T. K. Ng, O. M. Bakr, and B. S. Ooi, “Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry,” Opt. Express 24(15), 16586 (2016).
    [Crossref] [PubMed]
  6. K. B. Rodenhausen, D. Schmidt, T. Kasputis, A. K. Pannier, E. Schubert, and M. Schubert, “Generalized ellipsometry in-situ quantification of organic adsorbate attachment within slanted columnar thin films,” Opt. Express 20(5), 5419–5428 (2012).
    [Crossref] [PubMed]
  7. R. Miloua, Z. Kebbab, F. Chiker, K. Sahraoui, M. Khadraoui, and N. Benramdane, “Determination of layer thickness and optical constants of thin films by using a modified pattern search method,” Opt. Lett. 37(4), 449–451 (2012).
    [Crossref] [PubMed]
  8. M. Nenkov and T. Pencheva, “Calculation of thin-film optical constants by transmittance-spectra fitting,” J. Opt. Soc. Am. A 15(7), 1852–1857 (1998).
    [Crossref]
  9. P. K. Chung and S. T. Yen, “Extraction of infrared optical constants from fringing reflectance spectra,” J. Appl. Phys. 116(15), 153101 (2014).
    [Crossref]
  10. A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
    [Crossref]
  11. T. Güngör and B. Saka, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm,” Thin Solid Films 467(1-2), 319–325 (2004).
    [Crossref]
  12. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  13. E. R. Shaaban, “Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra,” Philos. Mag. 88(5), 781–794 (2008).
    [Crossref]
  14. N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
    [Crossref]
  15. P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge–Se–Te thin films,” Mater. Lett. 61(23-24), 4516–4518 (2007).
    [Crossref]
  16. K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
    [Crossref]
  17. G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
    [Crossref]
  18. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
    [Crossref] [PubMed]
  19. B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518(14), 3619–3624 (2010).
    [Crossref]
  20. M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
    [Crossref]
  21. M. Kar, “Error minimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42(3), 145–150 (2010).
    [Crossref]
  22. E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
    [Crossref]
  23. P. Meredith, G. S. Buller, and A. C. Walker, “Improved method for determining the optical constants of thin films and its application to molecular-beam-deposited polycrystalline layers,” Appl. Opt. 32(28), 5619–5627 (1993).
    [Crossref] [PubMed]
  24. A. Solieman and A. A. Abu-Sehly, “Determination of the optical constants of amorphous AsxS100− x films using effective-medium approximation and OJL model,” Mater. Chem. Phys. 129(3), 1000–1005 (2011).
    [Crossref]
  25. C. Guo, M. Kong, W. Gao, and B. Li, “Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements,” Opt. Lett. 38(1), 40–42 (2013).
    [Crossref] [PubMed]
  26. M. U. A. Bromba and H. Ziegler, “Application hints for savitzky-golay digital smoothing filters,” Anal. Chem. 53(11), 1583–1586 (1981).
    [Crossref]
  27. W. H. Press and S. A. Teukolsky, “Savitzky-Golay smoothing filters,” Comput. Phys. 4(6), 669–672 (1990).
    [Crossref]
  28. C. S. Interpolation, “Cubic spline interpolation,” Numer. Math. J. Chinese Univ. 64, 44–56 (1999).
  29. H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979).
  30. J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
    [Crossref]

2016 (2)

M. S. Alias, I. Dursun, M. I. Saidaminov, E. M. Diallo, P. Mishra, T. K. Ng, O. M. Bakr, and B. S. Ooi, “Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry,” Opt. Express 24(15), 16586 (2016).
[Crossref] [PubMed]

M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
[Crossref]

2014 (1)

P. K. Chung and S. T. Yen, “Extraction of infrared optical constants from fringing reflectance spectra,” J. Appl. Phys. 116(15), 153101 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

A. Solieman and A. A. Abu-Sehly, “Determination of the optical constants of amorphous AsxS100− x films using effective-medium approximation and OJL model,” Mater. Chem. Phys. 129(3), 1000–1005 (2011).
[Crossref]

2010 (3)

M. Kar, “Error minimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42(3), 145–150 (2010).
[Crossref]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010).
[Crossref] [PubMed]

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518(14), 3619–3624 (2010).
[Crossref]

2009 (1)

A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
[Crossref]

2008 (3)

K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
[Crossref]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

E. R. Shaaban, “Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra,” Philos. Mag. 88(5), 781–794 (2008).
[Crossref]

2007 (2)

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[Crossref]

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge–Se–Te thin films,” Mater. Lett. 61(23-24), 4516–4518 (2007).
[Crossref]

2006 (1)

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

2004 (1)

T. Güngör and B. Saka, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm,” Thin Solid Films 467(1-2), 319–325 (2004).
[Crossref]

1999 (2)

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

C. S. Interpolation, “Cubic spline interpolation,” Numer. Math. J. Chinese Univ. 64, 44–56 (1999).

1998 (1)

1993 (1)

1990 (1)

W. H. Press and S. A. Teukolsky, “Savitzky-Golay smoothing filters,” Comput. Phys. 4(6), 669–672 (1990).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

1981 (1)

M. U. A. Bromba and H. Ziegler, “Application hints for savitzky-golay digital smoothing filters,” Anal. Chem. 53(11), 1583–1586 (1981).
[Crossref]

1979 (1)

H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979).

1970 (1)

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

Abu-Sehly, A. A.

A. Solieman and A. A. Abu-Sehly, “Determination of the optical constants of amorphous AsxS100− x films using effective-medium approximation and OJL model,” Mater. Chem. Phys. 129(3), 1000–1005 (2011).
[Crossref]

Alias, M. S.

Andrews, H.

H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979).

Arnold, C. B.

Baker, J. H.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Bakr, O. M.

Benramdane, N.

Bernaloliva, A. M.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Bromba, M. U. A.

M. U. A. Bromba and H. Ziegler, “Application hints for savitzky-golay digital smoothing filters,” Anal. Chem. 53(11), 1583–1586 (1981).
[Crossref]

Buller, G. S.

Chiker, F.

Chung, P. K.

P. K. Chung and S. T. Yen, “Extraction of infrared optical constants from fringing reflectance spectra,” J. Appl. Phys. 116(15), 153101 (2014).
[Crossref]

Convey, D.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Diallo, E. M.

Diciu, M.

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

Dua, J.

Dursun, I.

El-Hagary, M.

M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
[Crossref]

El-Naggar, A. M.

A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
[Crossref]

El-Zaiat, S. Y.

A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
[Crossref]

Emam-Ismail, M.

M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
[Crossref]

Gao, W.

Gonzálezleal, J. M.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Green, M. A.

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[Crossref]

Güngör, T.

T. Güngör and B. Saka, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm,” Thin Solid Films 467(1-2), 319–325 (2004).
[Crossref]

Guo, C.

Hassan, S. M.

A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
[Crossref]

Hilfiker, J. N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Hou, H. S.

H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979).

Interpolation, C. S.

C. S. Interpolation, “Cubic spline interpolation,” Numer. Math. J. Chinese Univ. 64, 44–56 (1999).

Kar, M.

M. Kar, “Error minimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42(3), 145–150 (2010).
[Crossref]

Kasputis, T.

Katyal, S. C.

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge–Se–Te thin films,” Mater. Lett. 61(23-24), 4516–4518 (2007).
[Crossref]

Kebbab, Z.

Khadraoui, M.

Kong, M.

Li, B.

Márquez, E.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Meredith, P.

Miloua, R.

Minkov, D.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Mishra, P.

Navarro, J. C.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Negi, N. S.

K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
[Crossref]

Nenkov, M.

Ng, T. K.

Ooi, B. S.

Pannier, A. K.

Pencheva, T.

Pirghie, C.

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

Popa, E. M.

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

Press, W. H.

W. H. Press and S. A. Teukolsky, “Savitzky-Golay smoothing filters,” Comput. Phys. 4(6), 669–672 (1990).
[Crossref]

Prietoalcón, R.

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Rodenhausen, K. B.

Rusu, G. I.

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

Sahraoui, K.

Saidaminov, M. I.

Saka, B.

T. Güngör and B. Saka, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm,” Thin Solid Films 467(1-2), 319–325 (2004).
[Crossref]

Šantic, B.

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518(14), 3619–3624 (2010).
[Crossref]

Schmidt, D.

Schubert, E.

Schubert, M.

Shaaban, E. R.

M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
[Crossref]

E. R. Shaaban, “Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra,” Philos. Mag. 88(5), 781–794 (2008).
[Crossref]

Sharda, S.

N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
[Crossref]

Sharma, N.

N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
[Crossref]

Sharma, P.

N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
[Crossref]

K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
[Crossref]

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge–Se–Te thin films,” Mater. Lett. 61(23-24), 4516–4518 (2007).
[Crossref]

Sharma, V.

N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
[Crossref]

Singh, N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Smith, S. M.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Solieman, A.

A. Solieman and A. A. Abu-Sehly, “Determination of the optical constants of amorphous AsxS100− x films using effective-medium approximation and OJL model,” Mater. Chem. Phys. 129(3), 1000–1005 (2011).
[Crossref]

Song, S.

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Tauc, J.

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

Teukolsky, S. A.

W. H. Press and S. A. Teukolsky, “Savitzky-Golay smoothing filters,” Comput. Phys. 4(6), 669–672 (1990).
[Crossref]

Tiwald, T.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Tompkins, H. G.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Verma, K. C.

K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
[Crossref]

Walker, A. C.

Yen, S. T.

P. K. Chung and S. T. Yen, “Extraction of infrared optical constants from fringing reflectance spectra,” J. Appl. Phys. 116(15), 153101 (2014).
[Crossref]

Ziegler, H.

M. U. A. Bromba and H. Ziegler, “Application hints for savitzky-golay digital smoothing filters,” Anal. Chem. 53(11), 1583–1586 (1981).
[Crossref]

Anal. Chem. (1)

M. U. A. Bromba and H. Ziegler, “Application hints for savitzky-golay digital smoothing filters,” Anal. Chem. 53(11), 1583–1586 (1981).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

K. C. Verma, P. Sharma, and N. S. Negi, “Optical parameters of nanostructured thin films of electromagnetite Pb1−xSrx(Fe0.012Ti0.988)O3,” Appl. Phys. B 93(4), 859–864 (2008).
[Crossref]

Comput. Phys. (1)

W. H. Press and S. A. Teukolsky, “Savitzky-Golay smoothing filters,” Comput. Phys. 4(6), 669–672 (1990).
[Crossref]

IEEE Trans. Acoust. Speech Signal Process. (1)

H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979).

J. Alloys Compd. (1)

M. Emam-Ismail, E. R. Shaaban, and M. El-Hagary, “A new method for calculating the refractive index of semiconductor thin films retrieved from their transmission spectra,” J. Alloys Compd. 663, 20–29 (2016).
[Crossref]

J. Appl. Phys. (1)

P. K. Chung and S. T. Yen, “Extraction of infrared optical constants from fringing reflectance spectra,” J. Appl. Phys. 116(15), 153101 (2014).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

G. I. Rusu, M. Diciu, C. Pirghie, and E. M. Popa, “Structural characterization and optical properties of ZnSe thin films,” J. Non-Cryst. Solids 352(9-20), 1525–1528 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Mater. Chem. Phys. (2)

N. Sharma, S. Sharda, V. Sharma, and P. Sharma, “Optical analysis of Ge19Se81− xSb x thin films using single transmission spectrum,” Mater. Chem. Phys. 136(2-3), 967–972 (2012).
[Crossref]

A. Solieman and A. A. Abu-Sehly, “Determination of the optical constants of amorphous AsxS100− x films using effective-medium approximation and OJL model,” Mater. Chem. Phys. 129(3), 1000–1005 (2011).
[Crossref]

Mater. Lett. (1)

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge–Se–Te thin films,” Mater. Lett. 61(23-24), 4516–4518 (2007).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

Numer. Math. J. Chinese Univ. (1)

C. S. Interpolation, “Cubic spline interpolation,” Numer. Math. J. Chinese Univ. 64, 44–56 (1999).

Opt. Express (3)

Opt. Laser Technol. (1)

A. M. El-Naggar, S. Y. El-Zaiat, and S. M. Hassan, “Optical parameters of epitaxial GaN thin film on Si substrate from the reflection spectrum,” Opt. Laser Technol. 41(3), 334–338 (2009).
[Crossref]

Opt. Lett. (2)

Philos. Mag. (1)

E. R. Shaaban, “Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra,” Philos. Mag. 88(5), 781–794 (2008).
[Crossref]

Phys. Scr. (1)

E. Márquez, A. M. Bernaloliva, J. M. Gonzálezleal, R. Prietoalcón, J. C. Navarro, and D. Minkov, “Optical constants in the subgap region and vibrational behaviour by far-infrared spectroscopy of wedge-shaped obliquely-deposited amorphous GeS2 films,” Phys. Scr. 60(1), 90–96 (1999).
[Crossref]

Surf. Interface Anal. (1)

M. Kar, “Error minimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42(3), 145–150 (2010).
[Crossref]

Thin Solid Films (3)

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films 518(14), 3619–3624 (2010).
[Crossref]

T. Güngör and B. Saka, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum using a genetic algorithm,” Thin Solid Films 467(1-2), 319–325 (2004).
[Crossref]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films 516(22), 7979–7989 (2008).
[Crossref]

Other (2)

O. Stenzel, Optical Coatings: Material Aspects in Theory and Practice (Springer, 2014).

J. W. Amp, Optical Properties of Condensed Matter and Applications (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of an absorbing thin film on a thick finite transparent substrate
Fig. 2
Fig. 2 Transmission curve of a 1 µm film of Si-H on a finite glass substrate
Fig. 3
Fig. 3 The transmission curve with upper and lower tangent envelopes obtained by P-E 950 experimentally
Fig. 4
Fig. 4 The absorption characteristic s of chalcogenide film (a) the absorption coefficient vs the wavelength; (b) Square root of the product of the absorption coefficient and photon energy vs the photon energy in the strong absorption region
Fig. 5
Fig. 5 Dependence of the refractive index, group refractive index and group dispersion of Ge-Sb-Se film on the light wavelength

Tables (5)

Tables Icon

Table 1 Values of λ, TM and Tm obtained from Fig. 2 and the n and d values calculated by TPM.

Tables Icon

Table 2 Values of λ, TM and Tm obtained from Fig. 2 and the n and d values calculated by Swanepoel method.

Tables Icon

Table 3 Values of λ, TM and Tm from Fig. 2 and the n and d values calculated by TPM after improving the accuracy of λ, TM and Tm.

Tables Icon

Table 4 Values of λ, TM and Tm from Fig. 3 and the n and d values calculated by TPM.

Tables Icon

Table 5 Values of λ, TM and Tm from Fig. 3 and the n and d values calculated by Swanepoel method.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T= Ax BCxcosφ+D x 2
T M = Ax BCx+D x 2
T m = Ax B+Cx+D x 2
n= 2s T M T m T M T m + s 2 +1 2 + ( 2s T M T m T M T m + s 2 +1 2 ) 2 s 2
2nd=mλ
d= λ 1 λ 2 2( λ 1 n 2 λ 2 n 1 )
T = ( Ax ) ( BCxcosφ+D x 2 )( Ax )[ B ( Cxcosφ ) + ( D x 2 ) ] ( BCxcosφ+D x 2 ) 2
T M = ( Ax ) ( BCx+D x 2 )( Ax )[ B ( Cx ) + ( Dx ) ] ( BCx+D x 2 ) 2
T m = ( Ax ) ( B+Cx+D x 2 )( Ax )[ B + ( Cx ) + ( Dx ) ] ( B+Cx+D x 2 ) 2
λ= 2nd k
x= 8 n 2 s T M +( n 2 1 )( n 2 s 2 )+ { [ 8 n 2 s T M +( n 2 1 )( n 2 s 2 ) ] 2 ( n 2 1 ) 3 ( n 2 s 4 ) } 1/2 ( n1 ) 3 ( n s 2 )
α=- lnx d 2 ¯
( αE ) 1/2 =k( E E g )
n g =n-λ n
D λ = c -1 n g

Metrics