Abstract

Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/μm, 0.18 dB/μm and 0.52 dB/μm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05–1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot
Opt. Express 21(19) 22269-22284 (2013)

Effective-index modeling of channel plasmon polaritons

Sergey I. Bozhevolnyi
Opt. Express 14(20) 9467-9476 (2006)

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  2. A. Boltasseva and H. A. Atwater, “Low-loss plasmonics metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
    [PubMed]
  4. R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of cmos-compatible long-range dielectric loaded surface plasmon waveguides (lr-dlsppws),” Opt. Express 22, 22009–22017 (2014).
    [Crossref] [PubMed]
  5. N. Kinsey, G. V. Ferrera, M. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride interconnects,” Opt. Express 22, 12238–12247 (2014).
    [Crossref] [PubMed]
  6. C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
    [Crossref] [PubMed]
  7. D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
    [Crossref]
  8. H. S. Lee, C. Awada, S. Booutami, F. Charra, L. Douillard, and R. Espiau de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline cu surface,” Opt. Express 20, 8974–8981 (2012).
    [Crossref] [PubMed]
  9. D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
    [Crossref]
  10. N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
    [Crossref]
  11. H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
    [Crossref] [PubMed]
  12. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
    [Crossref] [PubMed]
  13. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin al and ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
    [Crossref] [PubMed]
  14. B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [Crossref]
  15. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [Crossref]
  16. A. V. Krasavin and A. V. Z., “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [Crossref]
  17. S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
    [Crossref] [PubMed]
  18. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
    [Crossref]
  19. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [Crossref] [PubMed]
  20. J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express 20, 27636–27649 (2012).
    [Crossref] [PubMed]
  21. K. Hassan, F. Leroy, G. C. des Francs, and J.-C. Weeber, “Dihedron dielectric loaded surface plasmon athermal polarization converter,” Opt. lett. 39, 697–700 (2014).
    [Crossref] [PubMed]
  22. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
    [Crossref]
  23. J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
    [Crossref]
  24. A. V. Krasavin and A. V. Zayats, “Active nanophtonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Optical Mater. 3, 1662–1690 (2015).
    [Crossref]
  25. P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
    [Crossref]
  26. Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
    [Crossref]
  27. P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
    [Crossref]
  28. V. Naik, Gururaj, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. S., and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  29. X.-b. Wang, J. Sun, C.-M. Chen, X.-Q. Sun, F. Wang, and D.-M. Zhang, “Thermal uv treatment on su-8 polymer for integrated optics,” Opt. Mater. Express 4, 509–517 (2014).
    [Crossref]
  30. J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
    [Crossref]
  31. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
    [Crossref] [PubMed]

2016 (2)

D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

2015 (2)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

A. V. Krasavin and A. V. Zayats, “Active nanophtonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Optical Mater. 3, 1662–1690 (2015).
[Crossref]

2014 (4)

2013 (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
[PubMed]

2012 (5)

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

V. Naik, Gururaj, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. S., and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

H. S. Lee, C. Awada, S. Booutami, F. Charra, L. Douillard, and R. Espiau de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline cu surface,” Opt. Express 20, 8974–8981 (2012).
[Crossref] [PubMed]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express 20, 27636–27649 (2012).
[Crossref] [PubMed]

2011 (2)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonics metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

2008 (4)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

2007 (4)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

A. V. Krasavin and A. V. Z., “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin al and ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
[Crossref] [PubMed]

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

2006 (1)

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

2001 (1)

P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
[Crossref]

1999 (1)

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

1994 (1)

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Albrektsen, O.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Andersen, T. B.

Apostolopoulos, D.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Areva, S.

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonics metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Aussenegg, F.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Avramopoulos, H.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Awada, C.

Babicheva, V. E.

Baum, B. K.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

Bauss, M.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Boissière, C.

Boltasseva, A.

N. Kinsey, G. V. Ferrera, M. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
[PubMed]

V. Naik, Gururaj, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. S., and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonics metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Booutami, S.

Bouhelier, A.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Bozhevolnyi, S. I.

R. Zektzer, B. Desiatov, N. Mazurski, S. I. Bozhevolnyi, and U. Levy, “Experimental demonstration of cmos-compatible long-range dielectric loaded surface plasmon waveguides (lr-dlsppws),” Opt. Express 22, 22009–22017 (2014).
[Crossref] [PubMed]

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Burov, E.

C. des Francs, G.

Chaneac, C.

Chang, S. Y.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Charitidis, C.

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

Charra, F.

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Chen, C.-M.

Chen, N. C.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Chou, C.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Colas-des Francs, G.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Dawson, P.

P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
[Crossref]

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Dereux, A.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express 20, 27636–27649 (2012).
[Crossref] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Desiatov, B.

Dimitriadis, C. A.

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

Dionne, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Douillard, L.

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Durupthy, O.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Espiau de Lamaestre, R.

Fatome, J.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Fedeli, J.-M.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Fedyanin, D. Y.

D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
[Crossref]

Ferrera, G. V.

Finot, C.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Gao, H.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

Gonzàlez, M. U.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Gornik, E.

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Gosciniak, J.

Goudonnet, J.-P.

P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
[Crossref]

Grandidier, J.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Hassan, K.

K. Hassan, F. Leroy, G. C. des Francs, and J.-C. Weeber, “Dihedron dielectric loaded surface plasmon athermal polarization converter,” Opt. lett. 39, 697–700 (2014).
[Crossref] [PubMed]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express 20, 27636–27649 (2012).
[Crossref] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Henzie, J.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

Ho, C. W.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Huang, Y. L.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Jeyachandran, Y. L.

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Kalavrouziotis, D.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Kaya, S.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Kildishev, A. V.

Kinsey, N.

Kirtaev, R. V.

D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
[Crossref]

Kjelstrup-Hansen, J.

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Kovacs, R.

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Active nanophtonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Optical Mater. 3, 1662–1690 (2015).
[Crossref]

A. V. Krasavin and A. V. Z., “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

Krenn, J.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Krenn, J. R.

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Kuittinen, M.

Kumar, A.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Lee, H. S.

Lee, M. H.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

Lehmuskero, A.

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Leroy, F.

Levy, U.

Lien, W. C.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Lin, Y. R.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Liu, R. C.

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

Logothetidis, S.

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

Mangalaraj, D.

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Markey, L.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Massenot, S.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Mazurski, N.

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Mielczarski, J. A.

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Millot, G.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Naik, G. V.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
[PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Naik, M.

Naik, V.

Narayandass, S. K.

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Ni, X.

Nielsen, M. G.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Odom, T. W.

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

Papaioannou, S.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Pastouret, A.

Patsalas, P.

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

Pleros, N.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Pyugranier, B. A. F.

P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
[Crossref]

Quidant, R.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Renger, J.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Rödhammer,

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

S., T. D.

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

Saviot, L.

Schroeder, J. L.

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

N. Kinsey, G. V. Ferrera, M. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
[PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Steiberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Steinberber, B.

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Steinmüller-Nethl, D.

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Stepanov, A. L.

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

Sun, J.

Sun, X.-Q.

Tekin, T.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Vahimaa, P.

Valassiades, O.

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

Volkov, V. S.

Vyrokinos, K.

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Wang, F.

Wang, X.-b.

Weeber, J.-C.

K. Hassan, F. Leroy, G. C. des Francs, and J.-C. Weeber, “Dihedron dielectric loaded surface plasmon athermal polarization converter,” Opt. lett. 39, 697–700 (2014).
[Crossref] [PubMed]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express 20, 27636–27649 (2012).
[Crossref] [PubMed]

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Yakubovsky, D. I.

D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
[Crossref]

Z., A. V.

A. V. Krasavin and A. V. Z., “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Active nanophtonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Optical Mater. 3, 1662–1690 (2015).
[Crossref]

Zektzer, R.

Zhang, D.-M.

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24, 3264–3294 (2013).
[PubMed]

Adv. Optical Mater. (1)

A. V. Krasavin and A. V. Zayats, “Active nanophtonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Optical Mater. 3, 1662–1690 (2015).
[Crossref]

Appl. Phys. Lett. (3)

A. V. Krasavin and A. V. Z., “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

B. Steinberber, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold surface as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 4941413 (2016).
[Crossref]

J. Appl. phys. (1)

N. C. Chen, W. C. Lien, R. C. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, “Excitation of surface plasma wave at tin/air interface in the kretschmann geometry,” J. Appl. phys. 109, 043104 (2011).
[Crossref]

P. Patsalas, C. Charitidis, S. Logothetidis, C. A. Dimitriadis, and O. Valassiades, “Combined electrical and mechanichal properties of titanium nitride thin films as metalization materials,” J. Appl. Phys. 86, 5296–5298 (1999).
[Crossref]

J. Light. Technol. (1)

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Light. Technol. 30, 3118–3125 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Mat. Sci. Eng. A (1)

Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mat. Sci. Eng. A 445–446, 223–236 (2007).
[Crossref]

Mat. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Nano Lett. (2)

C. Delacour, S. Blaize, P. Grosse, J.-M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[Crossref] [PubMed]

D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, “Ultralow-loss cmos copper plasmonic waveguides,” Nano Lett. 16, 362–366 (2016).
[Crossref]

Nano. Lett. (1)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano. Lett. 8, 1461–1471 (2008).
[Crossref] [PubMed]

Opt. Express (6)

Opt. lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (3)

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

P. Dawson, B. A. F. Pyugranier, and J.-P. Goudonnet, “Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total refelction,” Phys. Rev. B 63, 205410 (2001).
[Crossref]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

PNAS (1)

H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” PNAS 105, 20146–20151 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Papaioannou, D. Kalavrouziotis, K. Vyrokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Bauss, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in wdm traffic switching applications,” Sci. Rep. 2, 652 (2012).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonics metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Thin Solid Films (1)

D. Steinmüller-Nethl, R. Kovacs, E. Gornik, and Rödhammer, “Excitation of surface plasmon on titanium nitride films: determination of the dielectric function,” Thin Solid Films 237, 277–281 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of the optical characterization set-up. The set-up combines leakage radiation microscopy imaging and a fiber-to-fiber configuration for cut-back method applied to short propagation distance waveguides. The two lenses L1 and L2 are used to form the image of the sample onto the InGaAs camera. A third lens L3 can be added in the optical path to form the image of the fourier plane of the sample onto the camera sensor.

Fig. 2
Fig. 2

(a) Scanning electron microscope bird-eye view images of the dielectric loaded surface plasmon waveguides. (b) Detail of the output grating coupler corresponding to the white dashed perimeter shown in (a). (c) Zoomed image of the white dashed perimeter displayed in (b) showing the roughness of the taper side walls.

Fig. 3
Fig. 3

(a) Leakage radiation microscopy image of a 700×290 nm2 cross-section Au-based DLSPPW excited at 1550nm. (b) Imaging of the Fourier plane corresponding to the image shown in (a). The momentum transfer provided by the input grating leads to an efficient excitation of the DLSPPW mode (see text).

Fig. 4
Fig. 4

Fiber-to-Fiber characterization of 700×290 nm2 Au based DLSPPWs. The waveguides are excited by a broadband ASE source. (a) Raw transmission spectra recorded for waveguides with lengths ranging from 50 to 150 μm per step of 10 μm. (b) For a wavelength of 1550nm, intensity collected at the output of the waveguides of different length normalized by the output intensity of the shortest waveguide plotted on a logarithmic scale. The dashed line is a linear fit. (c) Spectral dispersion of the propagation distance of the DLSPPW mode.

Fig. 5
Fig. 5

Leakage radiation microscopy image at 1550nm of DLSPPW with a nominal width (design width) of 300nm and implemented on (a) Au (b) Cu, (c) Al and (d) TiN.

Fig. 6
Fig. 6

Damping distances as a function of effective index of DLSPPWs. Dashed lines are guidelines to the eyes.

Fig. 7
Fig. 7

Dielectric function for the metal of interest extracted from spectroscopic ellipsometry measurements. The solid lines correspond to the imaginary part of the dielectric function ε″. The dashed lines show the real part of the dielectric function ε′.

Fig. 8
Fig. 8

(a) Configuration for the modeling of the Au based DLSPPWs. hSU8=290nm is fixed at the experimental value of 290nm measured by atomic force microscopy. The thickness of gold is 87 mn and the dielectric function of gold is given in table 4. (b) Comparison of the experimental and modeled effective index of the DLSPPW mode as a function of the waveguide width. (c) Comparison of the experimental and modeled damping distances as a function of the DLSPPW width. (d) Change of damping distance of the Au based DLSPPW mode as a function of its effective index.

Fig. 9
Fig. 9

Comparison of modeled (dashed line) and experimental (dots) characteristics of the CMOS metal based DLSPPWs. For each metal, the thickness of the metal layer and the polymer waveguide (hSU−8) used for the modeling are equal to the experimental values (a) Copper (hSU−8=290nm), (b) Aluminum (hSU−8=295nm), (c) TiN (hSU8=295nm). The modeled data are obtained using the dielectric function of TiN given in table 4. (d) Comparison of experimental and computed data by using the dielectric function of TiN extracted from [5] for the dashed curve (EIMA) and from Ref [30] for the dash-dotted curve (EIMB).

Tables (4)

Tables Icon

Table 1 Deposition conditions and morphological properties of the different metals. (B.P.: Base Pressure, D.P.: Deposition Pressure, e-gun: electron gun, RF-PVD: radio frequency physical vapor deposition), Rgh: roughness. The thickness of each metal film is large enough to make leakage radiation losses negligible (see text).

Tables Icon

Table 2 Ohmic loss rate relative to gold for each CMOS metal for increasing effective index of the DLSPPW mode. At neff =1.2 for TiN, the damping distance needed for the computation of the OLR Au TiN is extrapolated from the experimental data shown in Fig. 6.

Tables Icon

Table 3 Fitting parameters of the spectroscopic ellipsometric measurements

Tables Icon

Table 4 Refractive index and corresponding dielectric function at 1550nm for each metal of interest.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I CMOS ( x ) I Au ( x ) = exp ( 2 Δ k CMOS Au x )
OLR CMOS Au ( dB / μ m ) = 10 ln 10 ( L SPP Au L SPP CMOS ) L SPP Au L SPP CMOS
ε ( ω ) = ε ω p 2 ω 2 + i γ d ω + j = 1 j = N A j ω 0 2 ω 2 ω 0 , j 2 + i γ j ω
1 L SPP scat = 1 L SPP 1 L SPP Ω

Metrics