Abstract

We experimentally study photonic crystal L3 nanocavities whose design Q factors (Qdesign) have been improved with the visualization of leaky components design method. The experimental Q values (Qexp) are monotonically increased from 6,000 to 2,100,000 by iteratively modifying the positions of some of the air holes, as determined by the referred design method. We investigate the Qexp tolerance to imperfections in the fabricated samples, which reveals that the cavities improved by the visualization method tend to lose some tolerance to structural differences between the fabricated samples and the design values.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components

Tatsuya Nakamura, Yasushi Takahashi, Yoshinori Tanaka, Takashi Asano, and Susumu Noda
Opt. Express 24(9) 9541-9549 (2016)

Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies

Kohei Ashida, Makoto Okano, Minoru Ohtsuka, Miyoshi Seki, Nobuyuki Yokoyama, Keiji Koshino, Masahiko Mori, Takashi Asano, Susumu Noda, and Yasushi Takahashi
Opt. Express 25(15) 18165-18174 (2017)

Fine-tuned high-Q photonic-crystal nanocavity

Yoshihiro Akahane, Takashi Asano, Bong-Shik Song, and Susumu Noda
Opt. Express 13(4) 1202-1214 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  3. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  4. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
    [Crossref] [PubMed]
  5. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  6. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
    [Crossref] [PubMed]
  7. Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
    [Crossref] [PubMed]
  8. T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
    [Crossref]
  9. S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).
  10. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [Crossref] [PubMed]
  11. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
    [Crossref] [PubMed]
  12. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
    [Crossref]
  13. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  14. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  15. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref] [PubMed]
  16. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
    [Crossref]
  17. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  18. Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
    [Crossref] [PubMed]
  19. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
    [Crossref] [PubMed]
  20. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
    [Crossref]
  21. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
    [Crossref]
  22. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
    [Crossref] [PubMed]
  23. M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
    [Crossref] [PubMed]
  24. E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
    [Crossref] [PubMed]
  25. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
    [Crossref]
  26. T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
    [Crossref] [PubMed]
  27. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
    [Crossref]
  28. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
    [Crossref]
  29. Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
    [Crossref]
  30. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [Crossref] [PubMed]
  31. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
    [Crossref] [PubMed]
  32. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
    [Crossref]
  33. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
    [Crossref] [PubMed]

2016 (1)

2014 (7)

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref] [PubMed]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

2013 (3)

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

2012 (2)

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

2011 (4)

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

2010 (1)

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

2009 (3)

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

2007 (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

2003 (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

2001 (1)

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Arakawa, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
[Crossref] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Asano, T.

T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Baba, T.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Badolato, A.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Chen, Y.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Chihara, M.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Endo, T.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Galli, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Gerace, D.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Grossman, E.

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hachuda, S.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Heuck, M.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hu, H.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Imai, Y.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Inui, Y.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Ishida, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Iwamoto, S.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
[Crossref] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Kawamoto, Y.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Kita, S.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Kumagai, N.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Lai, Y.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Lee, P. T.

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

Lin, P. T.

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

Lu, T. W.

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Minkov, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref] [PubMed]

Misawa, H.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Mochizuki, M.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

Mørk, J.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Nakamura, T.

Nishijima, Y.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Noda, S.

T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref] [PubMed]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Nomura, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Nozaki, K.

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Ota, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
[Crossref] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Otsuka, S.

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Oxenløwe, L. K.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Peucheret, C.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Pirotta, S.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Sato, Y.

Savona, V.

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref] [PubMed]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sekoguchi, H.

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Shirane, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Sio, K. U.

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

Song, B. S.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

Sugiya, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Taguchi, Y.

Takahashi, Y.

T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Takano, H.

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Tanaka, Y.

T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor,” Opt. Lett. 39(19), 5780–5783 (2014).
[Crossref] [PubMed]

Terawaki, R.

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Upham, J.

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Urbinati, G.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Watanabe, K.

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Xue, W.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yamashita, D.

Yorozu, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yvind, K.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Appl. Phys. Lett. (7)

T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett. 96(21), 213702 (2010).
[Crossref]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H 1 photonic crystal nanocavity,” Appl. Phys. Lett. 94(3), 033102 (2009).
[Crossref]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82(9), 1341–1343 (2003).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

IEICE Trans. Electron. (1)

S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron. 95C(2), 188–198 (2012).

Nat. Mater. (2)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (3)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2011).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Nature (5)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Opt. Express (11)

Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Tanaka, and S. Noda, “Two-dimensional photonic-crystal-slab channel -drop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[Crossref] [PubMed]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011).
[Crossref] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011).
[Crossref] [PubMed]

R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012).
[Crossref] [PubMed]

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Nanocavity-based self-frequency conversion laser,” Opt. Express 21(17), 19778–19789 (2013).
[Crossref] [PubMed]

H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

T. Nakamura, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components,” Opt. Express 24(9), 9541–9549 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “High-Q resonant modes in a photonic crystal heterostructure nanocavity and applicability to a Raman silicon laser,” Phys. Rev. B 88(23), 235313 (2013).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009).
[Crossref]

Sci. Rep. (1)

M. Minkov and V. Savona, “Automated optimization of photonic crystal slab cavities,” Sci. Rep. 4, 5124 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) 3D schematic view of the samples where the L3 cavity and the excitation waveguide are formed. The light dropped from the cavity perpendicularly to the slab and the excitation waveguide transmitted light were both measured. (b) Details of the fabricated L3 cavities. The red circles indicate the shifted holes after the optimization rounds, whereas the dotted circles indicate their positions before the shift. The numbers in each circle indicate the optimization round that led to that particular shift.
Fig. 2
Fig. 2 (a)−(i) Dropped and transmitted spectra for the 0- to 8-round L3 nanocavities, respectively. Black circles represent the experimentally obtained results for the dropped light, whereas the red curves are the transmitted spectra. The black solid curves show the fitted Lorentzian functions. The blue curve in Fig. 2(a) is the drop spectrum divided by the transmitted spectrum.
Fig. 3
Fig. 3 Time-resolved signals for the nanocavity, with a 5-ns-wide pulsed light input. The shaded region corresponds to the pulsed input ON interval. The red fitted line indicates a 1.15 ns photon lifetime.
Fig. 4
Fig. 4 (a)−(i) Near-infrared camera images of the 0-round to 8-round L3 cavities, respectively. The red lines represent the waveguides; the dashed lines indicate the PC pattern region interfaces.
Fig. 5
Fig. 5 (a) Experimental Q factors, and (b) calculated Q factors for three series of L3 cavities. (c) Experimentally obtained resonant wavelengths. (d) Calculated resonant wavelengths. The red dots, black dots, and blue dots represent cavities with r = 105, 110, and 115 nm, respectively.

Tables (3)

Tables Icon

Table 1 Summary results for the air hole shifts, Qdesign values, and calculated λ0, for nine L3 cavities with r = 110 nm. The 0-round column represents the normal L3 cavity, without air hole shifts.

Tables Icon

Table 2 Summary measured results for the nine nanocavities: resonant wavelength (λ0), linewidth (ΔλFWHW), transmittance (T0), distance between the cavity and the excitation waveguide (Dis), and experimental Q factor (Qexp). The Qexp values for the 8-round and multi-hetero (MH) nanocavities are estimated from the photon lifetime obtained from time-domain measurements.

Tables Icon

Table 3 Summary results for Qexp (upper row) and Qdesign (lower row) for the nine L3 cavities and multi-hetero nanocavities (MH), with different air hole radii: 105, 110, and 115 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q exp = λ 0 Δ λ FWHM T 0 ,
Q exp = ω 0 τ T 0 ,
1 Q exp = 1 Q design + 1 Q imp .

Metrics