Abstract

Gain dynamics study provides an attractive method to understand the intensity noise behavior in fiber amplifiers. Here, the gain dynamics of a medium power (5 W) clad-pumped Yb-fiber amplifier is experimentally evaluated by measuring the frequency domain transfer functions for the input seed and pump lasers from 10 Hz to 1 MHz. We study gain dynamic behavior of the fiber amplifier in the presence of significant residual pump power (compared to the seed power), showing that the seed transfer function is strongly saturated at low Fourier frequencies while the pump power modulation transfer function is nearly unaffected. The characterization of relative intensity noise (RIN) of the fiber amplifier is well explained by the gain dynamics analysis. Finally, a 600 kHz bandwidth feedback loop using an acoustic-optical modulator (AOM) controlling the seed intensity is successfully demonstrated to suppress the broadband laser intensity noise. A maximum noise reduction of about 30 dB is achieved leading to a RIN of −152 dBc/Hz (~1 kHz-10 MHz) at 2.5 W output power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers

M. Steinke, J. Neumann, D. Kracht, and P. Wessels
Opt. Express 23(11) 14946-14959 (2015)

Relative amplitude noise transfer function of an Yb3+-doped fiber amplifier chain

Philipp Gierschke, Cesar Jauregui, Thomas Gottschall, and Jens Limpert
Opt. Express 27(12) 17041-17050 (2019)

Gain dynamics in Raman fiber lasers and passive pump-to-Stokes RIN suppression

M. Steinke, J. Neumann, D. Kracht, and P. Wessels
Opt. Express 23(13) 16823-16837 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Grote, “Overview and Status of Advanced Interferometers for Gravitational Wave Detection,” J. Phys. Conf. Ser. 718, 022009 (2016).
    [Crossref]
  2. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617–10634 (2012).
    [Crossref] [PubMed]
  3. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
    [Crossref] [PubMed]
  4. D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
    [Crossref] [PubMed]
  5. N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
    [Crossref]
  6. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  7. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016).
    [Crossref] [PubMed]
  8. C. Basu, P. Wessels, J. Neumann, and D. Kracht, “High power single frequency solid state master oscillator power amplifier for gravitational wave detection,” Opt. Lett. 37(14), 2862–2864 (2012).
    [Crossref] [PubMed]
  9. G. Guiraud, N. Traynor, and G. Santarelli, “High-power and low-intensity noise laser at 1064 nm,” Opt. Lett. 41(17), 4040–4043 (2016).
    [Crossref] [PubMed]
  10. M. Müller, C. Jauregui-Misas, M. Kienel, F. Emaury, C. J. Saraceno, U. Keller, J. Limpert, and A. Tünnermann, “Amplitude Noise Reduction in Yb-doped Fiber Amplifiers,” Lasers Congress2016(ASSL, LSC, LAC), paper JTh2A.33.
    [Crossref]
  11. S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20(6), 975–985 (2002).
    [Crossref]
  12. M. Tröbs, P. Weßels, and C. Fallnich, “Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization,” Opt. Express 13(6), 2224–2235 (2005).
    [Crossref] [PubMed]
  13. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref] [PubMed]
  14. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
    [Crossref] [PubMed]
  15. N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
    [Crossref]
  16. G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Opt. Lett. 39(14), 4239–4242 (2014).
    [Crossref] [PubMed]
  17. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [Crossref] [PubMed]
  18. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
    [Crossref] [PubMed]
  19. Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
    [Crossref]
  20. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “On the Effective Ion Lifetime in Fiber Amplifiers,” in CLEO: Science and Innovations, OSA Technical Digest (Optical Society of America, 2013), paper CTu1K.1.
  21. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]

2016 (4)

2015 (1)

2014 (3)

2013 (1)

2012 (3)

2011 (1)

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

2009 (1)

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

2007 (2)

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

2005 (1)

2002 (1)

1992 (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Alouini, M.

Anderson, B. M.

Basu, C.

Behringer, R. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Berggren, K. K.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Bogan, C.

Bondu, F.

Byer, R. L.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Cui, S.

Cunningham, J. E.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Dajani, I.

Danion, G.

Danzmann, K.

Deng, H.

Digonnet, M. J.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Fallnich, C.

Feng, Y.

Feng, Z.

Flores, A.

Frede, M.

Grote, H.

H. Grote, “Overview and Status of Advanced Interferometers for Gravitational Wave Detection,” J. Phys. Conf. Ser. 718, 022009 (2016).
[Crossref]

Guiraud, G.

Jiang, S.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Kim, D. I.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Kim, H.

King, P.

Kracht, D.

Kwee, P.

Lee, Y. W.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Li, C.

Liu, C.

Loas, G.

Machida, K.

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

Mavalvala, N.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

McClelland, D. E.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

Mio, N.

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

Moesle, A.

Moriwaki, S.

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

Mueller, G.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

Naderi, N. A.

Neumann, J.

Novak, S.

Ozeki, T.

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

Peng, M.

Pöld, J.

Prentiss, M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Pulford, B.

Puncken, O.

Reitze, D. H.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

Rhee, H. G.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Robin, C.

Santarelli, G.

Savage, R. L.

Schnabel, R.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

Seifert, F.

Sinha, S.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Song, J. B.

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Steinke, M.

Tennant, D. M.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Timp, G.

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Traynor, N.

Tröbs, M.

Tünnermann, H.

Urbanek, K. E.

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

Wessels, P.

Weßels, P.

Wessels, P.

Weßels, P.

Willke, B.

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617–10634 (2012).
[Crossref] [PubMed]

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

Winkelmann, L.

Xu, S.

Yang, C.

Yang, Z.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, L.

Zhao, Q.

Zhou, J.

Zhou, K.

Gen. Relativ. Gravit. (1)

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. W. Lee, M. J. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-power-doped phosphate fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Conf. Ser. (1)

H. Grote, “Overview and Status of Advanced Interferometers for Gravitational Wave Detection,” J. Phys. Conf. Ser. 718, 022009 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Mio, T. Ozeki, K. Machida, and S. Moriwaki, “Laser Intensity Stabilization System Using Laser-Diode-Pumped Nd:YAG Rod-Laser Amplifier,” Jpn. J. Appl. Phys. 46(8A), 5338–5341 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69(11), 1636–1639 (1992).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78(10), 103110 (2007).
[Crossref] [PubMed]

Other (2)

M. Müller, C. Jauregui-Misas, M. Kienel, F. Emaury, C. J. Saraceno, U. Keller, J. Limpert, and A. Tünnermann, “Amplitude Noise Reduction in Yb-doped Fiber Amplifiers,” Lasers Congress2016(ASSL, LSC, LAC), paper JTh2A.33.
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “On the Effective Ion Lifetime in Fiber Amplifiers,” in CLEO: Science and Innovations, OSA Technical Digest (Optical Society of America, 2013), paper CTu1K.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic setup for seed and pump power modulation transfer function measurement. AOM: acoustic-optical modulator; PLMA-YDF: polarization-maintained large-mode-area Yb-doped fiber; λ/2: half-wave plate; PBS: pol. beam splitter; NF: neutral density filter; PD: photo detector; VSA: vector signal analyzer (S: signal source; 1: input port 1; 2: input port 2).
Fig. 2
Fig. 2 Output power modulation index relative to pump modulation index in magnitude (a) and phase (b) transfer function for different output powers.
Fig. 3
Fig. 3 Measured normalized amplitude (a) and phase (b) transfer function of output power relative to seed modulation at varied output power.
Fig. 4
Fig. 4 (a) Corner frequency ωeff/2π (squares) and dominant zero frequency ω0/2π (circles) versus output power for 27 mW (solid symbols) and 130 mW (cross symbols) seed power. (b) The ratio ωeff/ω0 for 27 mW and 130 mW of seed power respectively vs. output power.
Fig. 5
Fig. 5 Magnitude (a) and relative phase (b) comparison of experimental measured (solid curve) and numerical modelled (dash curve) transfer function of output power relative to seed modulation at 0.4 W (black), 1.8 W (red) and 4.5 W (blue).
Fig. 6
Fig. 6 Measured RIN of the fiber amplifier at 2.5 W (black plot), seed source (blue plot), pump diode (green plot), photodiode noise floor (dark yellow plot) and the pump induced noise (red dash plot).
Fig. 7
Fig. 7 Schematic of the experimental setup for intensity noise suppression. P-offset AMP: proportional-offset electronic amplifier; LPF: low-pass filter.
Fig. 8
Fig. 8 Measured RIN at 2.5 W output power for free-running (black curve) and for the AOM feedback loop active (green curve) (a). Figure (b) shows the measured open loop servo transfer function of the seed modulation (blue dash), servo box (red dot) and total gain (green line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω eff = P s 0 ( L ) B s + P p 0 ( L ) B p + 1 τ
(   m s ' m s ) 2 = ( ω 0 ω eff ) 2 1+ ( ω ω 0 ) 2 1+ ( ω ω eff ) 2
θ s ' =arctan ω ( ω 2 + ω eff ω 0 )/( ω eff ω 0 )
( m p ' m p ) 2 = [ B s ( P p 0 ( 0 )- P p 0 ( L ) )/ ω eff ] 2 1+ ( ω ω eff ) 2
θ p ' =arctan( ω/ ω eff )

Metrics