Abstract

A high-pulse-energy, diffraction-limited, wavelength-selectable, visible source, based on Raman frequency shifting of a frequency-doubled Yb-doped fiber laser, has been studied. The relative length-scaling laws of Raman gain and self-phase modulation push the design towards short fiber lengths with large core size. It is experimentally demonstrated that the Raman clean-up effect in a graded-index multi-mode fiber is not sufficient to obtain diffraction-limited beam quality in the short fiber length. Thus, a large-core photonic crystal fiber is used to maintain diffraction-limited performance and output pulse energies of ~1 μJ, at a 1-MHz repetition rate and 1.3-ns pulse-width are successfully achieved. This step-tunable visible source should find applications in photoacoustic microscopy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier

Konstantin Bobkov, Alexey Andrianov, Maxim Koptev, Sergey Muravyev, Andrei Levchenko, Vladimir Velmiskin, Svetlana Aleshkina, Sergey Semjonov, Denis Lipatov, Alexey Guryanov, Arkady Kim, and Mikhail Likhachev
Opt. Express 25(22) 26958-26972 (2017)

Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers

Pankaj Kadwani, Clemence Jollivet, R. Andrew Sims, Axel Schülzgen, Lawrence Shah, and Martin Richardson
Opt. Express 20(22) 24295-24303 (2012)

Polarisation maintaining 100W Yb-fiber MOPA producing µJ pulses tunable in duration from 1 to 21 ps

Kang Kang Chen, Jonathan H. V. Price, Shaif-ul Alam, John R. Hayes, Dejiao Lin, Andrew Malinowski, and David J. Richardson
Opt. Express 18(14) 14385-14394 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  2. A. Rosencwaig and G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36(9), 725–727 (1980).
    [Crossref]
  3. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  4. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  5. K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
    [Crossref] [PubMed]
  6. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  7. T. J. Allen, M. O. Berendt, J. Spurrell, S. U. Alam, E. Z. Zhang, D. J. Richardson, and P. C. Beard, “Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy,” in SPIE PHOTONICS WEST (2016), pp. 97080–97085.
  8. P. Hajireza, A. Forbrich, and R. Zemp, “In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomed. Opt. Express 5(2), 539–546 (2014).
    [Crossref] [PubMed]
  9. A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium (2012).
    [Crossref]
  10. K. K. Chen, S. U. Alam, P. Horak, C. A. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm,” Opt. Lett. 35(14), 2433–2435 (2010).
    [Crossref] [PubMed]
  11. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [Crossref] [PubMed]
  12. G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
    [Crossref]
  13. N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
    [Crossref] [PubMed]
  14. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
    [Crossref] [PubMed]
  15. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
    [Crossref]
  16. C. Antonelli, M. Shtaif, and A. Mecozzi, “Modeling of nonlinear propagation in space-division multiplexed fiber-optic transmission,” J. Lightwave Technol. 34(1), 36–54 (2016).
    [Crossref]
  17. Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
    [Crossref] [PubMed]
  18. R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
    [Crossref]

2016 (1)

2015 (2)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

2012 (3)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2010 (1)

2008 (1)

2007 (1)

2006 (1)

1981 (1)

G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
[Crossref]

1980 (1)

A. Rosencwaig and G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36(9), 725–727 (1980).
[Crossref]

Agrawal, G. P.

Alam, S. U.

Alley, T. G.

Antonelli, C.

Banerjee, P. K.

G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
[Crossref]

Bao, Z.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Buma, T.

A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium (2012).
[Crossref]

Busse, G.

A. Rosencwaig and G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36(9), 725–727 (1980).
[Crossref]

Charan, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Chen, K. K.

Cheng, J.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Chraplyvy, A. R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Codemard, C. A.

Desgroseilliers, M.

Dumas, J. P.

A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium (2012).
[Crossref]

Essiambre, R. J.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Essiambre, R.-J.

Forbrich, A.

Gambhir, S. S.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Ghiringhelli, F.

Gnauck, A. H.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Grüner-Nielsen, L.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Hajireza, P.

Hickey, L. M. B.

Horak, P.

Hu, S.

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Jakobsen, D.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Jiang, X.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Jokerst, J. V.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Lan, G. L.

G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
[Crossref]

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Lingle, R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Loya, A.

A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium (2012).
[Crossref]

Malinowski, A.

Maslov, K.

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Mecozzi, A.

Mei, J.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Mestre, M. A.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Mitra, S. S.

G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Mumtaz, S.

Pedersen, M. E. V.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Pu, K.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Rao, J.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Richardson, D. J.

Rosencwaig, A.

A. Rosencwaig and G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36(9), 725–727 (1980).
[Crossref]

Russell, T. H.

Ryf, R.

Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22(26), 32039–32059 (2014).
[Crossref] [PubMed]

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Shtaif, M.

Shuhendler, A. J.

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Sun, Y.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Terry, N. B.

Tkach, R. W.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Tulino, A. M.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vu, K. T.

Wang, K.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Wang, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Xiao, Y.

Xu, C.

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Zemp, R.

Zervas, M. N.

Zhang, H. F.

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Rosencwaig and G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36(9), 725–727 (1980).
[Crossref]

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101(16), 161106 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (1)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Raman Spectrosc. (1)

G. L. Lan, P. K. Banerjee, and S. S. Mitra, “Raman scattering in optical fibers,” J. Raman Spectrosc. 11(5), 416–423 (1981).
[Crossref]

Nat. Methods (1)

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, and J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice,” Nat. Nanotechnol. 9(3), 233–239 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (2)

T. J. Allen, M. O. Berendt, J. Spurrell, S. U. Alam, E. Z. Zhang, D. J. Richardson, and P. C. Beard, “Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy,” in SPIE PHOTONICS WEST (2016), pp. 97080–97085.

A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup
Fig. 2
Fig. 2 SHG power and conversion efficiency versus input fundamental power. The inset shows the second harmonic spectrum.
Fig. 3
Fig. 3 Output Raman spectra from a step-index single mode fiber with lengths of 15 m (a) and 5 m (b). The different colours represent different pump powers launched into the fibers to selectively excite different Stokes lines. Pump power: blue 285 mW; green 685 mW; red 880 mW in (a) and blue 540 mW; green 1.3 W; red 1.5 W in (b).
Fig. 4
Fig. 4 (a) Output beam profiles from graded-index fiber: pump after 200 m fiber (i); 3rd Stokes after 200 m fiber (ii); 3rd Stokes after 19 m fiber (iii) and (b) Raman spectra of the 19 m graded-index fiber. In (b) the different colours represent different pump powers launched into the fibers to selectively excite different Stokes lines. Pump power: blue 890 mW; green 1.1 W; red 1.5 W.
Fig. 5
Fig. 5 (a)Output Raman spectra and beam profile of the 15-m PCF and (b) Pulse shapes of pump and Raman Stokes, all pulse amplitudes are normalized and equally offset for better visibility. In (a) the different colours represent different pump powers launched into the fibers to selectively excite different Stokes lines. Pump power: blue 640 mW; green 1.6 W; red 1.9 W.

Metrics