Abstract

Ultrashort pulse generation in the 1600 nm wavelength region is required for deep-tissue biomedical imaging. We report on the characterization and adaptive compression of a multi-soliton output spanning >300 nm from a large-mode area photonic-crystal fiber rod for two separate laser setups. Sub-30 fs pulses are generated by first compressing of each soliton individually, and then followed by coherently combining all of the pulses in the train, which are separated by hundreds of femtoseconds. Simulations of the source, together with amplitude and phase coherence measurements are provided.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses

Yves Coello, Vadim V. Lozovoy, Tissa C. Gunaratne, Bingwei Xu, Ian Borukhovich, Chien-hung Tseng, Thomas Weinacht, and Marcos Dantus
J. Opt. Soc. Am. B 25(6) A140-A150 (2008)

Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications

Thomas Gottschall, Tobias Meyer, Michael Schmitt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 23(18) 23968-23977 (2015)

Soliton pulse compression in photonic band-gap fibers.

Dimitre G. Ouzounov, Christopher J. Hensley, Alexander L. Gaeta, Natesan Venkateraman, Michael T. Gallagher, and Karl W. Koch
Opt. Express 13(16) 6153-6159 (2005)

References

  • View by:
  • |
  • |
  • |

  1. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  2. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  3. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  4. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  5. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19(18), 17766–17773 (2011).
    [Crossref] [PubMed]
  6. K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).
  7. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6(6), 1149–1158 (1989).
    [Crossref]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  9. B. Nie, I. Saytashev, A. Chong, H. Liu, S. N. Arkhipov, F. W. Wise, and M. Dantus, “Multimodal microscopy with sub-30 fs Yb fiber laser oscillator,” Biomed. Opt. Express 3(7), 1750–1756 (2012).
    [Crossref] [PubMed]
  10. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [Crossref] [PubMed]
  11. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
    [Crossref]
  12. T. C. Wong, M. Rhodes, and R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1(2), 119–124 (2014).
    [Crossref]
  13. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215–1221 (2002).
    [Crossref] [PubMed]
  14. H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18(26), 27872–27884 (2010).
    [Crossref] [PubMed]
  15. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
    [Crossref]
  16. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 4; characterization and compensation of the spectral phase of ultrashort laser pulses,” Opt. Lett. 29, 775–777 (2004).
    [Crossref] [PubMed]
  17. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the MIIPS method for phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
    [Crossref]
  18. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
    [Crossref]
  19. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
    [Crossref] [PubMed]
  20. K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
    [Crossref] [PubMed]
  21. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  22. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), Chap. 3.
  23. V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Opt. Express 23(9), 12037–12044 (2015).
    [Crossref] [PubMed]
  24. G. Rasskazov, V. V. Lozovoy, and M. Dantus, “Spectral amplitude and phase noise characterization of titanium-sapphire lasers,” Opt. Express 23(18), 23597–23602 (2015).
    [Crossref] [PubMed]
  25. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [Crossref] [PubMed]
  26. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
    [Crossref]
  27. S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
    [Crossref] [PubMed]
  28. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
    [Crossref]
  29. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
    [Crossref]

2015 (2)

2014 (4)

T. C. Wong, M. Rhodes, and R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1(2), 119–124 (2014).
[Crossref]

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (2)

2008 (2)

2006 (2)

2005 (1)

2004 (1)

2003 (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

2002 (4)

1989 (1)

1986 (2)

Andresen, E. R.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

Arkhipov, S. N.

Bar-Joseph, I.

Bendahmane, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Berto, P.

Boppart, S. A.

Borukhovich, I.

Bouwmans, G.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Charan, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Chemla, D. S.

Chen, S.-J.

Cheng, L.-C.

Chong, A.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Coello, Y.

Coen, S.

Dantus, M.

V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Opt. Express 23(9), 12037–12044 (2015).
[Crossref] [PubMed]

G. Rasskazov, V. V. Lozovoy, and M. Dantus, “Spectral amplitude and phase noise characterization of titanium-sapphire lasers,” Opt. Express 23(18), 23597–23602 (2015).
[Crossref] [PubMed]

B. Nie, I. Saytashev, A. Chong, H. Liu, S. N. Arkhipov, F. W. Wise, and M. Dantus, “Multimodal microscopy with sub-30 fs Yb fiber laser oscillator,” Biomed. Opt. Express 3(7), 1750–1756 (2012).
[Crossref] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
[Crossref]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the MIIPS method for phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 4; characterization and compensation of the spectral phase of ultrashort laser pulses,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

de Sterke, C. M.

Dekker, S. A.

Dela Cruz, J. M.

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Eggleton, B. J.

Ferrand, P.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Gris-Sánchez, I.

Gu, X.

Gunaratne, T. C.

Gunn, J. M.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Horton, N. G.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
[Crossref] [PubMed]

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Islam, M. N.

Judge, A. C.

Keller, U.

Kimmel, M.

Knight, J. C.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Kopf, D.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Kudlinski, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Lægsgaard, J.

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Lin, C. P.

Liu, H.

Liu, T.-M.

Liu, Y.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Lozovoy, V. V.

V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Opt. Express 23(9), 12037–12044 (2015).
[Crossref] [PubMed]

G. Rasskazov, V. V. Lozovoy, and M. Dantus, “Spectral amplitude and phase noise characterization of titanium-sapphire lasers,” Opt. Express 23(18), 23597–23602 (2015).
[Crossref] [PubMed]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
[Crossref]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the MIIPS method for phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 4; characterization and compensation of the spectral phase of ultrashort laser pulses,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Mitschke, F. M.

Mollenauer, L. F.

Mussot, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Nie, B.

O’Shea, P.

Pant, R.

Paschotta, R.

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 4; characterization and compensation of the spectral phase of ultrashort laser pulses,” Opt. Lett. 29, 775–777 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Pestov, D.

Rasskazov, G.

Rhodes, M.

Rigneault, H.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

Saint-Jalm, S.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Saytashev, I.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schenkel, B.

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Sharma, U.

Shreenath, A. P.

Siegel, M.

Sucha, G.

Trebino, R.

Tseng, C.

Tu, H.

Vanvincq, O.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Wang, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Wegener, M.

Weinacht, T.

Windeler, R.

Windeler, R. S.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

B. Nie, I. Saytashev, A. Chong, H. Liu, S. N. Arkhipov, F. W. Wise, and M. Dantus, “Multimodal microscopy with sub-30 fs Yb fiber laser oscillator,” Biomed. Opt. Express 3(7), 1750–1756 (2012).
[Crossref] [PubMed]

Wong, T. C.

Wu, J.

Xu, B.

Xu, C.

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Xu, L.

Zeek, E.

Appl. Phys. Lett. (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

J. Biomed. Opt. (1)

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118(7), 3187–3196 (2003).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference 1; control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106(41), 9369–9373 (2002).
[Crossref]

Nat. Photonics (2)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Opt. Express (6)

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19(18), 17766–17773 (2011).
[Crossref] [PubMed]

V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
[Crossref] [PubMed]

J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215–1221 (2002).
[Crossref] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18(26), 27872–27884 (2010).
[Crossref] [PubMed]

V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Opt. Express 23(9), 12037–12044 (2015).
[Crossref] [PubMed]

G. Rasskazov, V. V. Lozovoy, and M. Dantus, “Spectral amplitude and phase noise characterization of titanium-sapphire lasers,” Opt. Express 23(18), 23597–23602 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup for multi-soliton generation: L1-4, lenses; HWP, half-wave plate; P, polarizer; SPEC, optical spectrum analyzer.

Fig. 2
Fig. 2

Multi-soliton spectra of LMA PC rod output in semi-logarithmic scale for (a) 1.3 μJ pump pulse energy and 37 cm long PC rod; and (b) 0.4 μJ pump pulse energy and 45 cm long PC rod.

Fig. 3
Fig. 3

Average spectrum (left axis, red curve) and degree of coherence (right axis, black curve) calculated for an ensemble of 100 pulses for (a) the first laser system with 1.3 μJ pump pulse energy and 37 cm long PC rod; and (b) the second laser system with 0.4 μJ/pulse and 45 cm long PC rod.

Fig. 4
Fig. 4

MIIPS traces showing the SHG intensity as a function of wavelength and spectral chirp: (a)-(c) for 1.3 μJ per pulse and 37 cm long PC rod; (d)-(f) for 0.4 μJ per pulse and 45 cm long PC rod. (a) and (d) before compression, (b) and (e) after compression, (c) and (f) numerical calculation assuming transform-limited pulses based on the input spectra. Each trace was independently normalized.

Fig. 5
Fig. 5

Frequency-resolved cross-correlation traces of the PC rod output of the second laser system without (a) and with (b) delay compensation. Intensity is plotted on a logarithmic scale. Plots were centered at soliton 2 for symmetry. (c) The fundamental spectrum. Note the wavelength axis of the fundamental spectrum is not linear. (d) The fundamental spectrum and the transform-limited spectral phase.

Fig. 6
Fig. 6

Results after compresssion. (top row) the first laser setup, (bottom row) the second laser setup. (a) and (d) the normalized SHG spectra before (red curve) and after (black curve) coherent temporal combining. (b) and (e) experimental interferometric autocorrelations. (c) and (f) theoretical interferometric autocorrelations.

Fig. 7
Fig. 7

Fidelity measurements for the multi-soliton source of the first laser system after compression obtained (a) for the entire spectrum and (b) for the isolated long-wavelength soliton.

Fig. 8
Fig. 8

Phase coherence tests of the compressed multi-soliton source. (a) The fundamental spectrum and the phase from –2π to 2π applied to the longest-wavelength soliton. (b) Second harmonic spectra at 0 rad (red) and π rad (black). The arrow shows the wavelengths that appeared due to the sum frequency generation. Normalized experimental and theoretical results from a phase shift scan for 799 nm (c) and 828 nm (d). (e) MIIPS scans for both uncompressed and compressed pulses, as well as numerical simulations.

Metrics