Abstract

A low-cost single arm double interferometer was developed for the concurrent measurement of linear thermal expansion (α) and thermo-optic (dn/dT) coefficients of transparent samples with plane and parallel surfaces. Owing to its common-path optical arrangement, the device is compact and stable, and allows the simultaneous measurement of interferences arising from a low-finesse Fabry-Perot etalon and from a Mach-Zehnder-type interferometer. The method was demonstrated with measurements of solid (silica, BK7, SF6) and liquid (water, ethanol and acetone) samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample

Carlos Moreno-Hernández, David Monzón-Hernández, Iván Hernández-Romano, and Joel Villatoro
Opt. Express 23(17) 22141-22148 (2015)

Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials

James A. Corsetti, William E. Green, Jonathan D. Ellis, Greg R. Schmidt, and Duncan T. Moore
Appl. Opt. 55(29) 8145-8152 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Werner, “Methods in high precision refractometry of optical glasses,” Appl. Opt. 7(5), 837–843 (1968).
    [Crossref] [PubMed]
  2. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30(25), 3656–3660 (1991).
    [Crossref] [PubMed]
  3. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
    [Crossref]
  4. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
    [Crossref]
  5. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48(13), 2461–2467 (2009).
    [Crossref] [PubMed]
  6. P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
    [Crossref]
  7. A. C. P. Rocha, J. R. Silva, S. M. Lima, L. A. O. Nunes, and L. H. C. Andrade, “Measurements of refractive indices and thermo-optical coefficients using a white-light Michelson interferometer,” Appl. Opt. 55(24), 6639–6643 (2016).
    [Crossref] [PubMed]
  8. G. D. Gillen and S. Guha, “Use of Michelson and Fabry-Perot interferometry for independent determination of the refractive index and physical thickness of wafers,” Appl. Opt. 44(3), 344–347 (2005).
    [Crossref] [PubMed]
  9. J. A. Corsetti, W. E. Green, J. D. Ellis, G. R. Schmidt, and D. T. Moore, “Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials,” Appl. Opt. 55(29), 8145–8152 (2016).
    [Crossref] [PubMed]
  10. P. H. Tomlins, P. Woolliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33(19), 2272–2274 (2008).
    [Crossref] [PubMed]
  11. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express 16(8), 5516–5526 (2008).
    [Crossref] [PubMed]
  12. S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express 22(22), 27392–27397 (2014).
    [Crossref] [PubMed]
  13. Y. H. Kim, S. J. Park, S. W. Jeon, S. Ju, C. S. Park, W. T. Han, and B. H. Lee, “Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe,” Opt. Express 20(21), 23744–23754 (2012).
    [Crossref] [PubMed]
  14. D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
    [Crossref]
  15. Heraeus-Quarzglas, Quartz Glass for Optics Data and Properties, (2014). https://www.heraeus.com
  16. Schott, Optical Glass Data Sheets (2014). http://www.schott.com

2016 (2)

2014 (2)

2012 (1)

2009 (1)

2008 (2)

2005 (1)

2001 (1)

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

1992 (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

1991 (1)

1968 (1)

1966 (1)

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

Aggarwal, I. D.

Andrade, L. H. C.

Askins, C.

Beaumont, A.

Choi, E. S.

Choi, H. Y.

Corsetti, J. A.

Ellis, J. D.

Gillen, G. D.

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Green, W. E.

Guha, S.

Han, W. T.

Hart, C.

Hlubina, P.

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

Jeon, S. W.

Jewell, J. M.

Ju, S.

Kim, M. J.

Kim, S.

Kim, Y. H.

Lee, B. H.

Lee, C.

Lima, S. M.

Moore, D. T.

Na, J.

Nunes, L. A. O.

Park, C. S.

Park, S. J.

Rocha, A. C. P.

Sato, Y.

Schmidt, G. R.

Silva, J. R.

Solimini, D.

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Taira, T.

Tedaldi, M.

Tomlins, P. H.

Werner, A. J.

Woolliams, P.

Zilio, S. C.

Appl. Opt. (6)

IEEE Photonics Technol. Lett. (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

J. Appl. Phys. (1)

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

Opt. Commun. (1)

P. Hlubina, “White-light spectral interferometry with the uncompensated Michelson interferometer and the group refractive index dispersion in fused silica,” Opt. Commun. 193(1–6), 1–7 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (2)

Heraeus-Quarzglas, Quartz Glass for Optics Data and Properties, (2014). https://www.heraeus.com

Schott, Optical Glass Data Sheets (2014). http://www.schott.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic view of the single-arm double interferometer: BS1 and BS2 are beam splitters, and FPD, MZD and ND are silicon photo-detectors.
Fig. 2
Fig. 2 Fringe patterns for the Fabry-Pérot (a) and Mach–Zehnder (b) interferometers in a 20 mm-thick sample of BK7 glass.
Fig. 3
Fig. 3 Temperature of consecutive maxima and minima for patterns observed in Fig. 2 for the Fabry-Pérot (a) and Mach–Zehnder (b) interferometers. The index origin was arbitrarily chosen.
Fig. 4
Fig. 4 Thermo-optic coefficients of water obtained with the present setup (black squares) and a commercial refractometer (red circles). The inset shows the cuvette holder.
Fig. 5
Fig. 5 Thermo-optic coefficients of ethanol and acetone obtained with the present setup (black squares) and a commercial refractometer (red circles).

Tables (2)

Tables Icon

Table 1 Averaged thermo-optic coefficients for ethanol and acetone

Tables Icon

Table 2 Thermo-optic and thermal expansion coefficients for solid samples

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dn dT +nα= λ 4 t 0 Δ T FP
dn dT +( n1 )α= λ 2 t 0 Δ T MZ
α= λ 2 t 0 [ 1 2Δ T FP 1 Δ T MZ ]
dn dT = λ 2 t 0 [ n Δ T MZ ( n1 ) 2Δ T FP ]

Metrics