Abstract

We report a wavelength-locked cladding-pumped ytterbium-doped fiber laser that can simultaneously emit radially and azimuthally polarized beams based on Pancharatnam-Berry phase optical elements. Multi-wavelength free running operation of the radially and azimuthally polarized laser beams can be switched to a single-wavelength one assisted by volume Bragg grating, with wavelength locked at around 1053.4 nm and spectral linewidth of 0.06 nm (FWHW). By rotating the glan-taylor polarizer, we can obtain switchable radially and azimuthally polarized beams output. The radially and azimuthally polarized beams mode purity can maintain 97.3% and 96.3% at maximum output power, and the polarization extinction ratio (PER) can reach 97.8% and 95.9% for the radially and azimuthally polarized laser, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings

Ze’ev Bomzon, Vladimir Kleiner, and Erez Hasman
Opt. Lett. 26(18) 1424-1426 (2001)

Manipulation of the Pancharatnam phase in vectorial vortices

Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman
Opt. Express 14(10) 4208-4220 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  3. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
    [Crossref] [PubMed]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  5. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
    [Crossref] [PubMed]
  6. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  7. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [Crossref] [PubMed]
  8. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  9. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  10. W. Gao, X. Hu, C. Mu, and P. Sun, “Generation of vector vortex beams with a small core multimode liquid core optical fiber,” Opt. Express 22(9), 11325–11330 (2014).
    [Crossref] [PubMed]
  11. W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
    [Crossref]
  12. D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
    [Crossref]
  13. J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31(20), 2969–2971 (2006).
    [Crossref] [PubMed]
  14. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
    [Crossref] [PubMed]
  15. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
    [Crossref] [PubMed]
  16. M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19(3), 1905–1914 (2011).
    [Crossref] [PubMed]
  17. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
    [Crossref]
  18. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express 19(15), 14526–14531 (2011).
    [Crossref] [PubMed]
  19. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5104 (2011).
    [Crossref] [PubMed]
  20. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
    [Crossref]
  21. K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
    [Crossref]
  22. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
    [Crossref] [PubMed]
  23. R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2010).
    [Crossref] [PubMed]
  24. Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
    [Crossref]
  25. Y. Ding, M. Xu, Y. Zhao, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Thermally driven continuous-wave and pulsed optical vortex,” Opt. Lett. 39(8), 2366–2369 (2014).
    [Crossref] [PubMed]
  26. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]
  27. L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
    [Crossref]
  28. S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
    [Crossref] [PubMed]
  29. R. Aghbolaghi and H. S. Charehjolo, “Radially and azimuthally polarized laser beams by thin-disk laser,” Appl. Opt. 55(13), 3510–3517 (2016).
    [Crossref] [PubMed]
  30. M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
    [Crossref] [PubMed]
  31. B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
    [Crossref]
  32. K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
    [Crossref]
  33. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  34. Y. Ke, Y. Liu, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Photonic spin filter with dielectric metasurfaces,” Opt. Express 23(26), 33079–33086 (2015).
    [Crossref] [PubMed]
  35. J. Kim, Y. M. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  36. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  37. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  38. Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
    [Crossref]
  39. D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  40. J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
    [Crossref] [PubMed]
  41. P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
    [Crossref] [PubMed]
  42. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  43. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  44. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
    [Crossref] [PubMed]
  45. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
    [Crossref] [PubMed]
  46. S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, “Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere,” Opt. Lett. 39(18), 5274–5276 (2014).
    [Crossref] [PubMed]
  47. J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
    [Crossref] [PubMed]
  48. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
    [Crossref]
  49. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]

2017 (1)

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

2016 (4)

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
[Crossref] [PubMed]

R. Aghbolaghi and H. S. Charehjolo, “Radially and azimuthally polarized laser beams by thin-disk laser,” Appl. Opt. 55(13), 3510–3517 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (8)

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
[Crossref] [PubMed]

Y. Ding, M. Xu, Y. Zhao, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Thermally driven continuous-wave and pulsed optical vortex,” Opt. Lett. 39(8), 2366–2369 (2014).
[Crossref] [PubMed]

W. Gao, X. Hu, C. Mu, and P. Sun, “Generation of vector vortex beams with a small core multimode liquid core optical fiber,” Opt. Express 22(9), 11325–11330 (2014).
[Crossref] [PubMed]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, “Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere,” Opt. Lett. 39(18), 5274–5276 (2014).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

2012 (3)

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

2009 (4)

2008 (6)

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
[Crossref] [PubMed]

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
[Crossref] [PubMed]

2007 (2)

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
[Crossref]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31(20), 2969–2971 (2006).
[Crossref] [PubMed]

2004 (2)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

1999 (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
[Crossref]

1972 (1)

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdou Ahmed, M.

Aghbolaghi, R.

Ahmed, M. A.

Alu, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Bai, J. T.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Balembois, F.

Beresna, M.

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Biener, G.

Bliokh, K. Y.

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

Bomzon, Z.

Brown, T.

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Charehjolo, H. S.

Chen, S.

Chen, W.

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Chen, X. M.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Clarkson, W. A.

Daniel, J. M. O.

Davidson, N.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Délen, X.

Didierjean, J.

Dietrich, T.

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Ding, Y.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Druon, F.

Du, L.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Eckerle, M.

Endo, M.

Escuti, M. J.

Fainman, Y.

Fan, D.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Fridman, M.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

Friesem, A. A.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, F.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Gao, W.

Gecevicius, M.

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Georges, P.

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gomes, J. T.

Graf, T.

Gu, C.

Gu, M.

Haefner, M.

Hasman, E.

Hayes, J. R.

Hu, X.

Huang, B.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
[Crossref] [PubMed]

Huang, H.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Huang, L. G.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Huang, Z.

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Jia, B.

Jiang, B. Q.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Jiang, G.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

Jin, C. J.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Kanazawa, S.

Kang, H.

Kawakami, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Kazansky, P. G.

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Ke, Y.

Kim, J.

Kim, J. W.

Kleiner, V.

Kozawa, Y.

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
[Crossref]

Kudenov, M. W.

Lerman, G. M.

Lesparre, F.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Levy, U.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
[Crossref] [PubMed]

Li, J.

Li, J. L.

Li, L. F.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Li, P.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Li, R.

Li, X.

Li, Y. M.

Lin, D.

Lin, Z.

Ling, X.

Ling, X. H.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Litvin, L.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Liu, J.

Liu, Y.

Liu, Y. C.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Lu, F.

Luo, H.

Luo, H. L.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Machavariani, G.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

Mackenzie, J. I.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Mao, D.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Martial, I.

Mei, T.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Miao, L.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

Ming, H.

Miskiewicz, M. N.

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Mu, C.

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Musha, M.

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
[Crossref]

Niv, A.

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
[Crossref]

Oh, C.

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Osten, W.

Pallmann, W.

Pang, L.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Pohl, D.

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

Pruss, C.

Qi, M.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Qiu, C. W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ren, Z. Y.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Resan, B.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Sato, S.

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
[Crossref]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Schaal, F.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Senatsky, Y.

Shen, D.

Shirakawa, A.

Sun, B.

Sun, P.

Sun, Z. P.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tang, P.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
[Crossref] [PubMed]

Thirugnanasambandam, M. P.

Tsai, C. H.

Ueda, K.

Vogel, M.

Voss, A.

Wang, A.

Wang, J.

Wang, J. Y.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Wang, Z.

Wang, Z. P.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Wei, K. Y.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Wen, S.

Wen, S. C.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Xia, K.

Xu, C.

Xu, J.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Xu, L.

Xu, M.

Xu, X. D.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Xu, X. G.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
[Crossref]

Yi, J.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

Yi, X. N.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Yonezawa, K.

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
[Crossref]

Youngworth, K.

Yu, H.

Yu, H. H.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhan, Q.

Zhang, G.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Zhang, H.

Zhang, H. J.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, S.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, W. D.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Zhang, X.

Zhao, C.

Zhao, J. L.

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

Zhao, Y.

Zhao, Y. G.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Zheng, R.

Zheng, W.

Zheng, X. L.

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

Zhong, L. X.

Zhou, J.

Zhou, X.

Zhou, X. X.

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Zhuang, S. D.

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

Zou, Y.

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alù, and A. Alu, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1(2), 022008 (2008).
[Crossref]

Appl. Phys. Lett. (6)

Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. G. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(1), 031113 (2012).
[Crossref]

L. F. Li, X. L. Zheng, C. J. Jin, M. Qi, X. M. Chen, Z. Y. Ren, J. T. Bai, and Z. P. Sun, “High repetition rate Q-switched radially polarized laser with a graphene-based output coupler,” Appl. Phys. Lett. 105(22), 221103 (2014).
[Crossref]

D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972).
[Crossref]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[Crossref]

Y. C. Liu, X. H. Ling, X. N. Yi, X. X. Zhou, H. L. Luo, and S. C. Wen, “Realization of polarization evolution on higher-order Poincare sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Huang, J. Yi, L. Du, G. Jiang, L. Miao, P. Tang, J. Liu, Y. Zou, H. Luo, C. Zhao, and S. Wen, “Graphene Q-Switched vectorial fiber laser with switchable polarized output,” IEEE J. Sel. Top. Quantum Electron. 23(1), 1–7 (2017).
[Crossref]

J. Phys. D. (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D. 32(22), 2871–2875 (1999).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46(8A8R), 5160–5163 (2007).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, L. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincare sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Express (11)

J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
[Crossref] [PubMed]

P. Tang, J. Liu, B. Huang, C. Xu, C. Zhao, and S. Wen, “Stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser at 1645 nm,” Opt. Express 23(9), 11037–11042 (2015).
[Crossref] [PubMed]

Y. Ke, Y. Liu, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Photonic spin filter with dielectric metasurfaces,” Opt. Express 23(26), 33079–33086 (2015).
[Crossref] [PubMed]

M. P. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19(3), 1905–1914 (2011).
[Crossref] [PubMed]

R. Zheng, C. Gu, A. Wang, L. Xu, and H. Ming, “An all-fiber laser generating cylindrical vector beam,” Opt. Express 18(10), 10834–10838 (2010).
[Crossref] [PubMed]

W. Gao, X. Hu, C. Mu, and P. Sun, “Generation of vector vortex beams with a small core multimode liquid core optical fiber,” Opt. Express 22(9), 11325–11330 (2014).
[Crossref] [PubMed]

W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. L. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10377–10384 (2016).
[Crossref]

J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express 19(15), 14526–14531 (2011).
[Crossref] [PubMed]

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5104 (2011).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Opt. Lett. (17)

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[Crossref] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[Crossref] [PubMed]

J. L. Li, K. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31(20), 2969–2971 (2006).
[Crossref] [PubMed]

D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
[Crossref] [PubMed]

M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33(15), 1771–1773 (2008).
[Crossref] [PubMed]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
[Crossref] [PubMed]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39(10), 2857–2859 (2014).
[Crossref] [PubMed]

Y. Ding, M. Xu, Y. Zhao, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Thermally driven continuous-wave and pulsed optical vortex,” Opt. Lett. 39(8), 2366–2369 (2014).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41(7), 1680–1683 (2016).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33(23), 2782–2784 (2008).
[Crossref] [PubMed]

S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, “Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere,” Opt. Lett. 39(18), 5274–5276 (2014).
[Crossref] [PubMed]

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[Crossref] [PubMed]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram of S-waveplate with q = 1/2 and (b) the conversion between Gaussian beam to radially or azimuthally polarized beams and the PR represent the partial reflection mirror.
Fig. 2
Fig. 2 Experiment setup of Yb-doped fiber laser with radially and azimuthally polarized beam output by use of S-waveplate.
Fig. 3
Fig. 3 Output power versus launched pump power for the fiber laser with radially and azimuthally polarized beams output.
Fig. 4
Fig. 4 Output spectrum of the free-running and wavelength-locked Yb-doped vectorial fiber laser.
Fig. 5
Fig. 5 (a) The experiment far-field intensity distributions of radially polarized beam at the maximum output power. (b)-(e) The radially polarized beam pattern after the passage through the polarization analyzer. The white arrows represent the optical axis direction of polarization analyzer.
Fig. 6
Fig. 6 (a) The experiment far-field intensity distributions of azimuthally polarized beam at the maximum output power. (b)-(e) The azimuthally polarized beam pattern after the passage through the polarization analyzer. The white arrows represent the optical axis direction of polarization analyzer.
Fig. 7
Fig. 7 The first and third rows show the theoretical Stokes parameters for radially and azimuthally polarized beam, respectively. The second and fourth rows show the experimental Stokes parameters for radially and azimuthally polarized beam, respectively. The three columns show the Stokes parameters S1, S2 and S3, respectively.
Fig. 8
Fig. 8 The normalized intensity variation of light passed through the mechanic slit when the linear polarizer analyzer was rotated at different angles for radially and azimuthally polarized beams. (a) Mechanic slit was rotated at x-axis and (b) Mechanic slit was rotated at y-axis.
Fig. 9
Fig. 9 (a) and (b) The intensity distribution of radially and azimuthally polarized beams along the x axis at the maximum output power. The pink dots and blue curves are the intensity profiles of theoretical radially or azimuthally polarized beam and Gaussian beam. The solid red lines represent the fitting results of superposition of Gaussian beam and radially or azimuthally polarized beams.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α ( r , φ ) = q φ + α 0
T ( r , φ ) = M ( r , φ ) J M 1 ( r , φ )
J = ( e i δ 2 0 0 e i δ 2 )
M ( r , φ ) = ( cos α sin α sin α cos α )
T ( r , φ ) = cos δ 2 ( 1 0 0 1 ) + i sin δ 2 ( cos 2 α sin 2 α sin 2 α cos 2 α )
S 1 = I 0 0 0 0 I 90 0 90 0 I 0 0 0 0 + I 90 0 90 0 , S 2 = I 45 0 45 0 I 135 0 135 0 I 45 0 45 0 + I 135 0 135 0 , S 3 = I 0 0 135 0 I 0 0 45 0 I 0 0 135 0 + I 0 0 45 0 ,

Metrics