Abstract

We demonstrate a method of creating high efficiency, high fidelity, holographic optical elements for the generation of complex optical fields, in a low cost photopolymer, Bayfol HX. The desired optical field profile is generated by a spatial light modulator and written into an optically addressable photopolymer as a volume hologram. We demonstrate the utility of this approach by trapping a Bose-Einstein condensate of rubidium-87 atoms in the nodal plane of an HG0,1 mode generated by one of these holographic optical elements. We also extend this method to the generation holograms with twice the angular momentum per photon than can be generated with a given spatial light modulator.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms

Tiffany Harte, Graham D. Bruce, Jonathan Keeling, and Donatella Cassettari
Opt. Express 22(22) 26548-26558 (2014)

Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps

Ahmed Abdelrahman, Tetsuya Mukai, Hartmut Häffner, and Tim Byrnes
Opt. Express 22(3) 3501-3513 (2014)

Full phase and amplitude control of holographic optical tweezers with high efficiency

Alexander Jesacher, Christian Maurer, Andreas Schwaighofer, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 16(7) 4479-4486 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
    [Crossref] [PubMed]
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
    [Crossref] [PubMed]
  3. M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
    [Crossref]
  4. K. Fuse, “Beam Shaping for Advanced Laser Materials Processing,” Laser Technik Journal 12, 19–22 (2015).
    [Crossref]
  5. C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
    [Crossref]
  6. A. Turpin, J. Polo, Y. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart, “Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction,” Opt. Express 23, 1638 (2015).
    [Crossref] [PubMed]
  7. A. E. Siegman, Lasers (University Science Books, 1986).
  8. F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
    [Crossref]
  9. D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45, 880 (2006).
    [Crossref] [PubMed]
  10. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
    [Crossref]
  11. M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).
  12. J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
    [Crossref]
  13. J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
    [Crossref] [PubMed]
  14. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
    [Crossref]
  15. M. T. Gale, M. Rossi, H. Schültz, P. Ehbets, H. P. Herzig, and D. Prongué, “Continuous-relief diffractive optical elements for two dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
    [Crossref] [PubMed]
  16. D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
    [Crossref]
  17. H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
    [Crossref]
  18. H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
    [Crossref]
  19. H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
    [Crossref]
  20. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998).
    [Crossref]
  21. J. A. Rodrigo, T. Alieva, A. Camara, O. Martinez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064 (2011).
    [Crossref] [PubMed]
  22. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679 (2007).
    [Crossref] [PubMed]
  23. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic Press, 2000)
    [Crossref]
  24. S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
    [Crossref]

2015 (2)

2014 (3)

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

2013 (4)

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

2012 (2)

C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
[Crossref] [PubMed]

2011 (2)

J. A. Rodrigo, T. Alieva, A. Camara, O. Martinez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064 (2011).
[Crossref] [PubMed]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

2009 (1)

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

2007 (2)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

1998 (3)

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

1993 (1)

Ahufinger, V.

Alieva, T.

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

Ambs, P.

Arlt, J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

Arrizón, V.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

Bao-Long, L.

C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
[Crossref]

Beeck, A.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

Berneth, H.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

Birkl, G.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Bruder, F. K.

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

Bruder, F.-K.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Calvo, M. L.

Camara, A.

Carrada, R.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

Cheben, P.

D’Andrea, C.

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Deuber, F.

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Dholakia, K.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

Ehbets, P.

Fäcke, T.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Forbes, A.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

Friebel, S.

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Fuse, K.

K. Fuse, “Beam Shaping for Advanced Laser Materials Processing,” Laser Technik Journal 12, 19–22 (2015).
[Crossref]

Gale, M. T.

García-Márquez, J.

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Gaunt, A. L.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

González, L. A.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

González-Vega, A.

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Gotlibovych, I.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

Grier, D. G.

Grimm, R.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic Press, 2000)
[Crossref]

Hadzibabic, Z.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

Hagen, R.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Haist, T.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

Hänsch, T. W.

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Herzig, H. P.

Hönel, D.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Jurbergs, D.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Kalkandjiev, T. K.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Küber, J.

Liesener, J.

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

Li-Juan, C.

C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
[Crossref]

Loiko, Y. V.

López, V.

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Martinez-Matos, O.

McLaren, M.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

Mhlanga, T.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

Millán, M. S.

Mompart, J.

Noé, E.

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker minimization in an LCoS Spatial Light Modulator,” Opt. Express 20, 8431–8441 (2012).
[Crossref] [PubMed]

Osten, W.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

Otón, J.

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic Press, 2000)
[Crossref]

Padgett, M. J.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

Pérez-Cabré, E.

Peter, A.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

Polo, J.

Prongué, D.

Pruss, C.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Reicherter, M.

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Rodrigo, J. A.

Roichman, Y.

Rölle, T.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Rossi, M.

Roux, F. S.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

Rozas, D.

Ruiz, U.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

Sacks, Z. S.

Schaal, F.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

Schmaltz, F.

Schmidutz, T. F.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

Schültz, H.

Shu-Juan, L.

C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Smith, R. P.

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

Swartzlander, G. A.

Tiziani, H. J.

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Turpin, A.

Volkov, A.

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Walz, J.

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Walze, G.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic Press, 2000)
[Crossref]

Weiser, M.-S.

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

Weitz, M.

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Chinese Physics Letters (1)

C. Li-Juan, L. Shu-Juan, and L. Bao-Long, “The interference effect of a Bose –Einstein Condensate in a ring-shaped trap,” Chinese Physics Letters 29, 050305 (2012).
[Crossref]

J. Mod. Opt. (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. 24, 3500–3507 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Technik Journal (1)

K. Fuse, “Beam Shaping for Advanced Laser Materials Processing,” Laser Technik Journal 12, 19–22 (2015).
[Crossref]

Nature Comm. (1)

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nature Comm. 5, 3248 (2014).
[Crossref]

Opt. Express (3)

Optics and Lasers in Engineering (1)

J. García-Márquez, V. López, A. González-Vega, and E. Noé, “Flicker in a twisted nematic spatial light modulator,” Optics and Lasers in Engineering 51, 741 (2013).
[Crossref]

Phys. Rev. A (1)

S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Phys. Rev. A 57, R20 (1998).
[Crossref]

Phys. Rev. Lett. (1)

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, “Bose-Einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).
[Crossref] [PubMed]

Proc. SPIE (6)

M. Reicherter, J. Liesener, T. Haist, and H. J. Tiziani, “Advantages of holographic optical tweezers,” Proc. SPIE 5143, 499556 (2003).

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014)
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, M.-S. Weiser, and A. Volkov, “New recording materials for the holographic industry,” Proc. SPIE 7233, 72330 (2009).
[Crossref]

H. Berneth, F. K. Bruder, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 79570, 79570H (2011).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, T. Rölle, G. Walze, and M.-S. Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,” Proc. SPIE 8776, 877603 (2013).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
[Crossref] [PubMed]

Other (2)

A. E. Siegman, Lasers (University Science Books, 1986).

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic Press, 2000)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic of the experimental set up used for recording transmission holograms. M, mirror; NPBS, non-polarising beam splitter cube; P, polariser; λ/2, half-wave plate; L, lens; SF, spatial filter; SLM, spatial light modulator. For recording reflection holograms the stage on which the hologram is mounted is rotated such that the object and reference beams enter the photopolymer on opposite surfaces.

Fig. 2
Fig. 2

HG0,1 mode used to trap atoms in a blue detuned light sheet. a) Image of the intensity profile of the HG0,1 mode at the focus of a lens. b) A fit (dashed lines) of a HG0,1 intensity profile to the measured intensity profile (circles) taken along the green line shown in the image. c) An image of ultra cold rubdiium-87 atoms trapped within the nodal region of HG0,1 mode (shown in 2(a)) formed from ≈50 mW of 532 nm laser light with a magnetic field providing the radial confinement of the atoms. Optical density is shown on the right hand side in arbitrary units.

Fig. 3
Fig. 3

Optical setup for recording large angular momentum modes. The optical set up used to record the hologram with twice the angular momentum per photon achievable by diffraction from just the SLM; all labels are as in Fig 1. The difference in the number of reflections each mode undergoes must be an odd integer in order for the modes to be mirror images of each other.

Fig. 4
Fig. 4

An optical field containing 160 ħ of orbital angular momentum, generated using a transmission hologram recorded using the optical setup in Fig 3. a) The intensity distribution of the optical field. The (green) line is the intensity along a line bisecting the image vertically b) The interference of the optical field with its mirror reflection, verifying the high angular momentum state.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η Tot = P D P D + P T η SO η H ,

Metrics