Abstract

A comb-shaped waveguide based on the excitation of coupled spoof surface plasmon (CSSP) mode is investigated, and is found to have a pronounced effect for the enhancement of fingerprint detection sensitivity in the terahertz (THz) regime. Composed of two oppositely oriented metal stripes with single-side comb-shaped corrugations, the waveguide is formed due to the coupling of SSP modes supported by metal corrugations on both sides and the mode is tightly localized between the central gap, which provides a perfect site for accommodating the samples in THz sensing. The effective detection of thin-layer lactose is given as an example to demonstrate the sensitive detection of it at a thickness of only a few microns. A transmission spectrum through the waveguide with a pronounced dip at its characteristic absorption frequency of 0.529THz is shown, which can never be observed using the transmission through a lactose layer with the same thickness.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications

Jingwen Li, Kathirvel Nallappan, Hichem Guerboukha, and Maksim Skorobogatiy
Opt. Express 25(4) 4126-4144 (2017)

Broadband molecular sensing with a tapered spoof plasmon waveguide

Jingjing Yang, Yan Francescato, Dezhang Chen, Jianfeng Yang, and Ming Huang
Opt. Express 23(7) 8583-8589 (2015)

Hybrid terahertz plasmonic waveguide for sensing applications

Borwen You, Ja-Yu Lu, Tze-An Liu, and Jin-Long Peng
Opt. Express 21(18) 21087-21096 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
    [Crossref] [PubMed]
  2. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
    [Crossref] [PubMed]
  3. H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006).
    [Crossref] [PubMed]
  4. Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
    [Crossref] [PubMed]
  5. S. Lin, K. Bhattarai, J. Zhou, and D. Talbayev, “Thin InSb layers with metallic gratings: a novel platform for spectrally-selective THz plasmonic sensing,” Opt. Express 24(17), 19448–19457 (2016).
    [Crossref] [PubMed]
  6. H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
    [Crossref]
  7. P. Weis, J. L. Garcia-Pomar, R. Beigang, and M. Rahm, “Hybridization Induced Transparency in composites of metamaterials and atomic media,” Opt. Express 19(23), 23573–23580 (2011).
    [Crossref] [PubMed]
  8. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  9. Y. Yang, H. Chen, S. Xiao, N. A. Mortensen, and J. Zhang, “Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons,” Opt. Express 23(15), 19074–19081 (2015).
    [Crossref] [PubMed]
  10. N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16(6), 4094–4105 (2008).
    [Crossref] [PubMed]
  11. J. Yang, Y. Francescato, D. Chen, J. Yang, and M. Huang, “Broadband molecular sensing with a tapered spoof plasmon waveguide,” Opt. Express 23(7), 8583–8589 (2015).
    [Crossref] [PubMed]
  12. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  13. Y. Zhang, P. Zhang, and Z. Han, “One-dimensional spoof surface plasmon structures for planar terahertz photonic integration,” J. Lightwave Technol. 33(18), 3796–3800 (2015).
    [Crossref]
  14. G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).
  15. H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]

2016 (1)

2015 (4)

2014 (1)

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

2013 (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

2012 (1)

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

2011 (1)

2010 (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

2008 (1)

2006 (2)

H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006).
[Crossref] [PubMed]

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

2003 (2)

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

Ajito, K.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

Bastiaans, G. J.

Beigang, R.

Bhattarai, K.

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

Campurra, G.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Chen, D.

Chen, H.

Chen, Y.

Cheng, Q.

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Chung, Y.

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

Coniglio, D.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Cui, T.

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cui, T. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D’Arienzo, M.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Di Pietro, R.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Doria, A.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Francescato, Y.

Gallerano, G. P.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Garcia-Pomar, J. L.

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Giovenale, E.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Grischkowsky, D.

Han, Z.

Huang, M.

Jiang, W.

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Kim, H. S.

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Kniffin, G. P.

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

Lai, A.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Laman, N.

Lee, D. K.

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Lee, S.

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Lin, S.

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, H. B.

Ma, H.

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Melinger, J. S.

Messina, G.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Mortensen, N. A.

Rahm, M.

Romanò, M.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Rungsawang, R.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

Scarfì, M. R.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Seo, M.

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Shen, X.

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sree Harsha, S.

Talbayev, D.

Tomita, I.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

Ueno, Y.

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Weis, P.

Xiao, S.

Yang, J.

Yang, Y.

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Zeni, O.

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

Zhang, J.

Zhang, P.

Zhang, X. C.

Zhang, Y.

Zhou, J.

Zurk, L. M.

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

Anal. Chem. (1)

Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy,” Anal. Chem. 78(15), 5424–5428 (2006).
[Crossref] [PubMed]

IEEE T. THz Sci. Techn. (1)

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

J. Biol. Phys. (2)

M. R. Scarfì, M. Romanò, R. Di Pietro, O. Zeni, A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, G. Campurra, D. Coniglio, and M. D’Arienzo, “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol. Phys. 29(2-3), 171–176 (2003).
[Crossref] [PubMed]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29(2-3), 179–185 (2003).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

H. Ma, X. Shen, Q. Cheng, W. Jiang, and T. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

H. S. Kim, D. K. Lee, S. Lee, Y. Chung, and M. Seo, “Highly sensitive terahertz sensor for glucose detection,” Proc. SPIE 9655, 96551I (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simulation model of the coupled comb-shaped waveguide. The upper is metallic waveguide and the lower is quartz crystal substrate with d = 25um; a = 0.5d; h = d; H = 1.2d; t = 250 nm.
Fig. 2
Fig. 2 Dispersion relation of the coupled comb-shaped waveguide with different values of the air gap g and the period d. The other geometric parameters with a = 0.5d; h = d; H = 1.2d. (a) d = 25 um; g = 0.1d and g = 0.2d. The bold purple solid line represents the dispersion relation of a single corrugated metallic stripe structure. (b) d = 25um and d = 50um; g = 0.2d.
Fig. 3
Fig. 3 The magnetic field component Hz distribution with the period d = 25um and air gap g = 0.2d. (left) Symmetric mode with kxd/π = 0.9 and f = 1.310THz. (right) Antisymmetric mode with kxd/π = 0.9 and f = 1.518THz.
Fig. 4
Fig. 4 (a) Transmission rate of the coupled comb-shaped waveguide and after lactose layer deposited on the waveguide surface with d = 25 um; a = 0.5d; h = d; H = 1.2d and the air gap g = 0.2d or g = 0.1d. The thickness of the lactose being 2.3 um and the length of the waveguide set as 20d (the period of air grooves array being d). (b) The transmittance of lactose with different thickness when the incident wave is normal to the lactose layer.
Fig. 5
Fig. 5 Transmission rate of lactose film deposited on the surface of the coupled comb-shaped waveguide with different values of waveguide length. Geometric parameters with d = 25 um; a = 0.5d; g = 0.05d; h = d; H = 1.2d. The thickness of the lactose film being 2.3 um.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε r = ε + i=1 Δ ε i ω pi 2 ω pi 2 ω 2 j γ i ω
A(ω)= 1 P in 0.5ω ϵ lactose " (ω) | E | 2 dV

Metrics