Abstract

We present a new platform based on suspended III-V semiconductor nanopillars for direct integration of optoelectronic devices on a silicon substrate. Nanopillars grown in core-shell mode with InGaAs/InP quantum wells can support long-wavelength Fabry-Pérot resonances at room temperature with this novel configuration. Experimental results are demonstrated at a silicon-transparent wavelength of 1460 nm, facilitating integration with silicon platform.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths

Fanglu Lu, Indrasen Bhattacharya, Hao Sun, Thai-Truong D. Tran, Kar Wei Ng, Gilliard N. Malheiros-Silveira, and Connie Chang-Hasnain
Optica 4(7) 717-723 (2017)

Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si

Si Zhu, Bei Shi, Qiang Li, Yating Wan, and Kei May Lau
Opt. Express 25(25) 31281-31293 (2017)

Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens
Opt. Mater. Express 3(1) 35-46 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
    [PubMed]
  2. G. N. Malheiros-Silveira, F. Lu, I. Bhattacharya, T.-T. D. Tran, H. Sun, and C. J. Chang-Hasnain, “Integration of III-V Nanopillar Resonator to In-Plane Silicon Waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh1L.5.
    [Crossref]
  3. H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
    [Crossref] [PubMed]
  4. K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
    [Crossref] [PubMed]
  5. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
    [Crossref] [PubMed]
  6. J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
    [Crossref] [PubMed]
  7. A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
    [Crossref] [PubMed]
  8. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
    [Crossref] [PubMed]
  9. I. Bhattacharya, S. Deshpande, G. N. Malheiros-Silveira, and C. J. Chang-Hasnain, “Efficient Electroluminescence from III/V Quantum-Well-in-Nanopillar Light Emitting Diodes Directly Grown on Silicon,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM4R.6.
    [Crossref]
  10. W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
    [Crossref] [PubMed]
  11. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
    [Crossref]
  12. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
    [Crossref]
  13. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
    [Crossref]
  14. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
    [Crossref]
  15. S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
    [Crossref]
  16. F. Lu, T.-T. D. Tran, K. W. Ng, Z. Gong, and C. J. Chang-Hasnain, “Long-wavelength InGaAs/InP quantum-well-on-nanopillar laser grown on silicon,” in Compound Semiconductor Week (2016), paper Tu4O5.3.
  17. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [Crossref]
  18. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).
  20. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  21. D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
    [Crossref] [PubMed]
  22. D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
    [Crossref] [PubMed]

2016 (2)

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

2015 (3)

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

2014 (3)

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

2013 (1)

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

2012 (2)

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

2011 (1)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

2010 (1)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

2008 (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

2003 (1)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

1999 (1)

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Abstreiter, G.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Adair Gerke, S.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Agarwal, R.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Anderson, P. D.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Arab, S.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Bhattacharya, I.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Borg, M.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Brenneis, A.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Breslin, C.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bruley, J.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Calleja, M.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Chang-Hasnain, C.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chen, R.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Cronin, S. B.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

D’Urso, B.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dapkus, P. D.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Das Kanungo, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Dey, A. W.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Döblinger, M.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Farrell, A. C.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Fernández-Regúlez, M.

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Finley, J. J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Fukui, T.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Gignac, L.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Gil-Santos, E.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Hara, S.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Hertenberger, S.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Hessman, D.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Holleitner, A. W.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Hua, B.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Huffaker, D. L.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Jacobsson, D.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Kim, H.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Ko, W. S.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Koblmüller, G.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Larsson, C.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Lee, R. K.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Lee, W.-J.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Li, K.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Lieber, C. M.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Llorens, J. M.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Lu, F.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Malvar, O.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

Mårtensson, T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Morkötter, S.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Moselund, K. E.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Motohisa, J.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Ng, K. W.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Ohlsson, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Overbeck, J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Painter, O. J.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Parekh, D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Pini, V.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Povinelli, M. L.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Ramos, D.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Rask, M.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Riel, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Samuelson, L.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

San Paulo, A.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

San Paulo, Á.

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Scherer, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Schmid, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Sedgwick, F. G.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Senanayake, P.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Signorello, G.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Svensson, C. P. T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Svensson, J.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Tamayo, J.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Tomioka, K.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Trägårdh, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Tran, T. D.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Tran, T.-T. D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Treu, J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Werner, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Wernersson, L.-E.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Yao, M.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Yariv, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Yoshimura, M.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Zhou, C.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

ACS Nano (1)

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Phys. Lett. (2)

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Nano Lett. (5)

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Nano Res. (1)

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Nanotechnology (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Nat. Photonics (2)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Nature (2)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Other (4)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).

F. Lu, T.-T. D. Tran, K. W. Ng, Z. Gong, and C. J. Chang-Hasnain, “Long-wavelength InGaAs/InP quantum-well-on-nanopillar laser grown on silicon,” in Compound Semiconductor Week (2016), paper Tu4O5.3.

G. N. Malheiros-Silveira, F. Lu, I. Bhattacharya, T.-T. D. Tran, H. Sun, and C. J. Chang-Hasnain, “Integration of III-V Nanopillar Resonator to In-Plane Silicon Waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh1L.5.
[Crossref]

I. Bhattacharya, S. Deshpande, G. N. Malheiros-Silveira, and C. J. Chang-Hasnain, “Efficient Electroluminescence from III/V Quantum-Well-in-Nanopillar Light Emitting Diodes Directly Grown on Silicon,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM4R.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Generic scheme of the proposed platform.
Fig. 2
Fig. 2 (a) SEM image from nanopillars grown on top of <111> Si substrate. Inset at top-right depicts the core-shell configuration. (b) PL dependence from input power at 5 K.
Fig. 3
Fig. 3 (a) Sketch from a nanopillar suspended by a SiO2 membrane, and isolated from the Si substrate. SEM image of 60° of tilted view from suspended structures assuming geometries of trampoline (b) and bridge (c).
Fig. 4
Fig. 4 Optical characterization of the proposed suspended structures. (a) Power sweeping during PL measurements at room temperature (295 K) and under CW 980 nm of laser pump. (b) PL measurements at 5 K under CW 660nm of laser pump. (c) Calculated group refractive index. (d). TRPL from a InP nanopillar before and after etching Si by using SF6 plus O2 RIE plasma.
Fig. 5
Fig. 5 (a) µ-PL spectra measured at 5 K from the three single nanopillars with different lengths at pump power of 500 μW. (b). Inverse length of the nanopillars versus mode spacing variation shows a linear dependence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 2L[ nλ( dn dλ ) ]

Metrics