Abstract

We present straight and s-curve waveguides in polymers fabricated by femtosecond laser writing. A number of parallel tracks are written inside the bulk material with a well-defined gap in the middle that forms the waveguide core. This approach offers the flexibility to tailor the mode-field diameter of the waveguide by adjusting the size of the gap. The waveguides exhibit very low propagation losses of 0.3 dB/cm and no significant bend losses for curve radii of R ≥ 20 mm. This fabrication process will allow for the realization of complex waveguide networks in a compact footprint chip.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription

Thomas Calmano, Anna-Greta Paschke, Sebastian Müller, Christian Kränkel, and Günter Huber
Opt. Express 21(21) 25501-25508 (2013)

Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect

Jin Tae Kim, Suntak Park, Jung Jin Ju, Sangjun Lee, and Sangin Kim
Opt. Express 18(23) 24213-24220 (2010)

Femtosecond laser processing induced low loss waveguides in multicomponent glasses

B. Hari Babu, Mengsi Niu, Thomas Billotte, Pengqing Bi, Fei Zheng, Bertrand Poumellec, Matthieu Lancry, and Xiao-Tao Hao
Opt. Mater. Express 7(10) 3580-3590 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Hanemann and K. Honnef, “Viscosity and refractive index adjustment of poly(methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics,” Polym. Adv. Technol. 26(4), 294–299 (2015).
    [Crossref]
  2. K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
    [Crossref]
  3. M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
    [Crossref]
  4. K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Topics Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  5. S. Gross, M. Dubov, and M. J. Withford, “On the use of Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
    [Crossref] [PubMed]
  6. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
    [Crossref] [PubMed]
  7. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
    [Crossref]
  8. C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).
  9. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  10. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  11. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
    [Crossref] [PubMed]
  12. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  13. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  14. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  15. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [Crossref] [PubMed]
  16. S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
    [Crossref]
  17. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
    [Crossref]
  18. W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
    [Crossref] [PubMed]
  19. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3d photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  20. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  21. G. Palmer, M. Schultze, M. Emons, A. L. Lindemann, M. Pospiech, D. Steingrube, M. Lederer, and U. Morgner, “12 MW peak power from a two-crystal Yb:KYW chirped-pulse oscillator with cavity-dumping,” Opt. Express 18(18), 19095–19100 (2010).
    [Crossref] [PubMed]
  22. W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
    [Crossref]
  23. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

S. Gross, M. Dubov, and M. J. Withford, “On the use of Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

T. Hanemann and K. Honnef, “Viscosity and refractive index adjustment of poly(methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics,” Polym. Adv. Technol. 26(4), 294–299 (2015).
[Crossref]

2014 (1)

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

2013 (3)

2012 (2)

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

2011 (1)

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

2010 (3)

2009 (3)

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

2007 (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

2006 (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

2005 (1)

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
[Crossref]

2004 (2)

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

Arriola, A.

Baum, A.

Bellini, N.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Cerullo, G.

Charles, N.

Chen, F.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Chiodo, N.

De Marco, C.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

Della Valle, G.

Demircan, A.

Denz, C.

Dong, N.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Dubov, M.

Eaton, S. M.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

Emons, M.

Fuerbach, A.

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Gross, S.

Günther, A.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Hanemann, T.

T. Hanemann and K. Honnef, “Viscosity and refractive index adjustment of poly(methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics,” Polym. Adv. Technol. 26(4), 294–299 (2015).
[Crossref]

Herrmann, J.

Honnef, K.

T. Hanemann and K. Honnef, “Viscosity and refractive index adjustment of poly(methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics,” Polym. Adv. Technol. 26(4), 294–299 (2015).
[Crossref]

Horn, W.

Huber, G.

Imbrock, J.

Ishigure, T.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Topics Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Itoh, K.

Jaque, D.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jovanovic, N.

Killi, A.

Kopf, D.

Kränkel, C.

Kroesen, S.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Lederer, M.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lindemann, A. L.

Liu, D.

Lopez, C.

Lu, Q.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Lucarini, V.

Martínez-Vázquez, R.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

Morgner, U.

Müller, S.

Nishii, J.

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Olaizola, S. M.

Osellame, R.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
[Crossref] [PubMed]

R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[Crossref] [PubMed]

Palmer, G.

Paschke, A.-G.

Pätzold, W. M.

Perrie, W.

Petermann, K.

Pospiech, M.

Pun, E.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
[Crossref]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

Rahlves, M.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Ramponi, R.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[Crossref] [PubMed]

Reinhardt, C.

Reithmeier, E.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Rezem, M.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Richardson, K.

Richardson, M.

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Roth, B.

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Sammut, R. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

Schultze, M.

Scully, P. J.

Siebenmorgen, J.

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Topics Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Sowa, S.

Steingrube, D.

Steinmann, A.

Taccheo, S.

Tamaki, T.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Tung, K.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Turri, S.

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

Tuthill, P. G.

Vázquez de Aldana, J. R.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Watanabe, W.

Withford, M. J.

Wong, W.

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
[Crossref]

Yang, J.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Zhang, C.

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Lett. 19(13), 12503–12508 (2011).

Zoubir, A.

Appl. Phys. A (2)

K. Tung, W. Wong, and E. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80(3), 621–626 (2005).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

Appl. Phys. B (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

IEE J. Microwaves, Opt. and Acoust. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, “Measurement of radiation loss in curved single-mode fibres,” IEE J. Microwaves, Opt. and Acoust. 2(4), 134–140 (1978).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Topics Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

J. Biophoton. (1)

S. M. Eaton, C. De Marco, R. Martínez-Vázquez, R. Ramponi, S. Turri, G. Cerullo, and R. Osellame, “Femtosecond laser microstructuring for polymeric lab-on-chips,” J. Biophoton. 5(8–9), 687–702 (2012).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (8)

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Gross, M. Dubov, and M. J. Withford, “On the use of Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express 23(6), 7767–7770 (2015).
[Crossref] [PubMed]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3d photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

G. Palmer, M. Schultze, M. Emons, A. L. Lindemann, M. Pospiech, D. Steingrube, M. Lederer, and U. Morgner, “12 MW peak power from a two-crystal Yb:KYW chirped-pulse oscillator with cavity-dumping,” Opt. Express 18(18), 19095–19100 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Polym. Adv. Technol. (1)

T. Hanemann and K. Honnef, “Viscosity and refractive index adjustment of poly(methyl methacrylate-co-ethyleneglycol dimethacrylate) for application in microoptics,” Polym. Adv. Technol. 26(4), 294–299 (2015).
[Crossref]

Procedia Technology (1)

M. Rezem, A. Günther, M. Rahlves, B. Roth, and E. Reithmeier, “Hot embossing of polymer optical waveguides for sensing applications,” Procedia Technology 15, 514–520 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Femtosecond laser writing scheme. (a) Cross-sectional schematic depiction of stress-induced waveguiding zones between multiple modification tracks written with a cascaded-focus at a constant spacing Δy = 16 μm. (b) Measured intensity distribution of a guided mode at 638 nm which occurs between every two adjacent tracks in this pattern.
Fig. 2
Fig. 2 Waveguide morphology. (a) Two blocks of each four modifications get written with a gap of length l which forms the core of the waveguide. Within each block the modifications are separated by Δy. (b) Cross-sectional dark field microscopy image of a waveguide structure. (c) To create s-curved waveguides each individual track has to vary in radius of curvature. The reference radius R refers to the center of the waveguide.
Fig. 3
Fig. 3 Mode profiles in false color representation for different lateral spacings l between the modification blocks and its influence on the ellipticity. The white dots represent three more modifications on each side with a respective distance of 10 μm.
Fig. 4
Fig. 4 Insertion losses for waveguides at different lengths with l = 16, 18, 20, and 22 μm for two test-wavelengths: (a) λ = 638 nm and (b) λ = 850 nm. Propagation losses α are determined from a linear fit.
Fig. 5
Fig. 5 Bend losses per unit length of s-curve waveguides with l = 18 μm in dependency of the bend radius R measured at λ = 638 nm. The theoretical curve was calculated according to equation (1) with a = 3 μm, Δn = 1.5 · 10−3, and neff = 1.49062.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α BL ( R ) = 1 2 ( π a R W 3 ) 1 / 2 ( U V K 1 ( W ) ) 2 exp ( 4 3 Δ n W 3 n 1 a V 2 R ) .

Metrics