Abstract

We present an optical solution called DMD-PS to boost the dynamic range of 2D imaging spectroscopic measurements up to 22 bits by incorporating a digital micromirror device (DMD) prior to detection in combination with the periodic shadowing (PS) approach. In contrast to high dynamic range (HDR), where the dynamic range is increased by recording several images at different exposure times, the current approach has the potential of improving the dynamic range from a single exposure and without saturation of the CCD sensor. In the procedure, the spectrum is imaged onto the DMD that selectively reduces the reflection from the intense spectral lines, allowing the signal from the weaker lines to be increased by a factor of 28 via longer exposure times, higher camera gains or increased laser power. This manipulation of the spectrum can either be based on a priori knowledge of the spectrum or by first performing a calibration measurement to sense the intensity distribution. The resulting benefits in detection sensitivity come, however, at the cost of strong generation of interfering stray light. To solve this issue the Periodic Shadowing technique, which is based on spatial light modulation, is also employed. In this proof-of-concept article we describe the full methodology of DMD-PS and demonstrate – using the calibration-based concept – an improvement in dynamic range by a factor of ~100 over conventional imaging spectroscopy. The dynamic range of the presented approach will directly benefit from future technological development of DMDs and camera sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging

Wei Feng, Fumin Zhang, Weijing Wang, Wei Xing, and Xinghua Qu
Appl. Opt. 56(13) 3831-3840 (2017)

Design of a high-numerical-aperture digital micromirror device camera with high dynamic range

Yang Qiao, Xiping Xu, Tao Liu, and Yue Pan
Appl. Opt. 54(1) 60-70 (2015)

Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy

Zachary J. Smith, Sven Strombom, and Sebastian Wachsmann-Hogiu
Opt. Express 19(18) 16950-16962 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
    [Crossref] [PubMed]
  2. H. Karttunen, P. Kröger, H. Oja, M. Poutanan, and K. J. Donner, Fundamental Astronomy (Springer-Verlag, Berlin Heidelberg, ed. 5, 2007).
  3. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 3rd edition (Taylor & Francis, 1996).
  4. C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, Maidenhead, ed. 4, 1994).
  5. J. M. Hollas, Modern Spectroscopy (John Wiley & Sons, New York, ed. 4, 2004).
  6. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
    [Crossref]
  7. V. A. Fassel, J. M. Katzenberger, and R. K. Winge, “Effectiveness of interference filters for reduction of stray light effects in atomic emission spectrometry,” Appl. Spectrosc. 33(1), 1–5 (1979).
    [Crossref]
  8. P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324, 397–425 (1986).
  9. G. Larson, V. Fassel, R. Winge, and R. Kniseley, “Ultratrace analyses by optical emission spectroscopy: the stray light problem,” Appl. Spectrosc. 30(4), 384 (1976).
    [Crossref]
  10. E. Kristensson, J. Bood, M. Aldén, E. Nordström, J. Zhu, S. Huldt, P. E. Bengtsson, H. Nilsson, E. Berrocal, and A. Ehn, “Stray light suppression in spectroscopy using periodic shadowing,” Opt. Express 22(7), 7711–7721 (2014).
    [Crossref] [PubMed]
  11. E. Kristensson and A. Ehn, “Improved spectral sensitivity by combining periodic shadowing and high dynamic range imaging,” Spectrosc. Lett. 49(2), 91–95 (2016).
    [Crossref]
  12. P. E. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from Photographs,” inProceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, T. Whitted, ed. (ACM Press/Addison-Wesley, 1997), pp. 369–378.
    [Crossref]
  13. M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
    [Crossref]
  14. D. Giassi, B. Liu, and M. B. Long, “Use of high dynamic range imaging for quantitative combustion diagnostics,” Appl. Opt. 54(14), 4580–4588 (2015).
    [Crossref] [PubMed]
  15. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
    [Crossref] [PubMed]
  16. F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
    [Crossref]
  17. G. Ritt and B. Eberle, “Automatic suppression of intense monochromatic light in electro-optical sensors,” Sensors (Basel) 12(12), 14113–14128 (2012).
    [Crossref] [PubMed]
  18. K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
    [Crossref]

2016 (1)

E. Kristensson and A. Ehn, “Improved spectral sensitivity by combining periodic shadowing and high dynamic range imaging,” Spectrosc. Lett. 49(2), 91–95 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

2012 (1)

G. Ritt and B. Eberle, “Automatic suppression of intense monochromatic light in electro-optical sensors,” Sensors (Basel) 12(12), 14113–14128 (2012).
[Crossref] [PubMed]

2007 (1)

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

2006 (1)

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

1998 (1)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

1986 (1)

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324, 397–425 (1986).

1982 (1)

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[Crossref]

1979 (1)

1976 (1)

Aldén, M.

Ansari, D. O.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Bengtsson, P. E.

Berrocal, E.

Bood, J.

Boumans, P. W. J. M.

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324, 397–425 (1986).

Chen, G. Z.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Clemente, P.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Durán, V.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Eberle, B.

G. Ritt and B. Eberle, “Automatic suppression of intense monochromatic light in electro-optical sensors,” Sensors (Basel) 12(12), 14113–14128 (2012).
[Crossref] [PubMed]

Ehn, A.

Fassel, V.

Fassel, V. A.

Fernández-Alonso, M.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Gao, L.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Giassi, D.

Huldt, S.

Irles, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Janik, L. J.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

Katzenberger, J. M.

Kearney, K. J.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Kniseley, R.

Kristensson, E.

Lancis, J.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Larson, G.

Li, C.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Liang, J.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Liu, B.

Long, M. B.

McBratney, A. B.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

Meade, M. L.

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[Crossref]

Nie, S.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Nilsson, H.

Ninkov, Z.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Nordström, E.

Peng, X.-H.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Qian, X.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Ritt, G.

G. Ritt and B. Eberle, “Automatic suppression of intense monochromatic light in electro-optical sensors,” Sensors (Basel) 12(12), 14113–14128 (2012).
[Crossref] [PubMed]

Shin, D. M.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Skjemstad, J. O.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

Soldevila, F.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Tajahuerce, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Viscarra Rossel, R. A.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

Walvoort, D. J. J.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

Wang, L. V.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Wang, M. D.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Winge, R.

Winge, R. K.

Yang, L.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Yin-Goen, Q.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Young, A. N.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Zhu, J.

Appl. Opt. (1)

Appl. Phys. B (1)

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[Crossref]

Appl. Spectrosc. (2)

Geoderma (1)

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131(1-2), 59–75 (2006).
[Crossref]

J. Anal. Chem. (1)

P. W. J. M. Boumans, “A century of spectral interferences in atomic emission spectroscopy - Can we master them with modern apparatus and approaches?” J. Anal. Chem. 324, 397–425 (1986).

J. Phys. E Sci. Instrum. (1)

M. L. Meade, “Advances in lock-in amplifiers,” J. Phys. E Sci. Instrum. 15(4), 395–403 (1982).
[Crossref]

Nat. Biotechnol. (1)

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Nature (1)

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Sensors (Basel) (1)

G. Ritt and B. Eberle, “Automatic suppression of intense monochromatic light in electro-optical sensors,” Sensors (Basel) 12(12), 14113–14128 (2012).
[Crossref] [PubMed]

Spectrosc. Lett. (1)

E. Kristensson and A. Ehn, “Improved spectral sensitivity by combining periodic shadowing and high dynamic range imaging,” Spectrosc. Lett. 49(2), 91–95 (2016).
[Crossref]

Other (5)

P. E. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from Photographs,” inProceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, T. Whitted, ed. (ACM Press/Addison-Wesley, 1997), pp. 369–378.
[Crossref]

H. Karttunen, P. Kröger, H. Oja, M. Poutanan, and K. J. Donner, Fundamental Astronomy (Springer-Verlag, Berlin Heidelberg, ed. 5, 2007).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 3rd edition (Taylor & Francis, 1996).

C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, Maidenhead, ed. 4, 1994).

J. M. Hollas, Modern Spectroscopy (John Wiley & Sons, New York, ed. 4, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Intensity modulated 2D spectrum. The example shows a Zinc emission spectrum as seen by the detector (left panel) when a transmission Ronchi grating is placed in front of the spectrometer, creating a spatial modulation of the spectral lines along the vertical direction. The Fourier transform of the image on the right shows how the spectral information is transferred away from the 0th order spatial frequency.
Fig. 2
Fig. 2 The PS data analysis. (a) An intensity-modulated spectrum is acquired, where all spectral lines are modulated along the spatial direction. (b) The Fourier transform of (a), highlighting one spectral line wherein one of the two fundamental frequencies at ± ν together with the DC component can be observed. (c) By multiplying the spectrum with a reference signal, the spatial frequencies are rearranged, placing the fundamental peak in the origin while the DC component now instead appears at ± ν. (d) The low-pass filter used to extract the information from the modulated component. (e) The resulting filtered Fourier transform. (f) By taking the inverse Fourier transform of the filtered data, the final, stray light-free spectrum is extracted.
Fig. 3
Fig. 3 Basic principle of the DMD. Each mirror can toggle between two states, referred to as “On” or “Off”. The percentage of time spent in each position determines the grayscale level.
Fig. 4
Fig. 4 The optical design of the spectrometer. Light is collected with a lens and the object is imaged onto the entrance slit, where a Ronchi transmission grating is positioned to modulate the incoming light. Two 2” concave mirrors are used to collimate the light and image the spectrally separated light onto the DMD. The “On” state light is then collected with an EM-CCD camera (Andor, Luca). Prior to the measurements, a grid target is uploaded to the DMD, to enable pixel-to-pixel overlap between the DMD and the camera.
Fig. 5
Fig. 5 The data acquisition procedure to record HDR spectra. (a) A conventional 2D spectrum, acquired with all DMD mirrors in their “On” state. (b) The acquired data is then inverted and sent to the DMD, thus reducing the intensity of strong spectral lines. (c) An example of a ‘modified’ spectrum, where the relative strength between the spectral lines are more uniform. (d) An intensity-modulated spectrum, acquired with a longer exposure time to allow weaker spectral features to be detected without saturating the detector. (e) The acquired spectrum is then analyzed using the PS algorithm and (f) finally the user-induced manipulation is software-compensated for by multiplying the PS spectrum with the DMD image. Note that the intensities are on a logarithmic scale.
Fig. 6
Fig. 6 Spectra acquired using either conventional 2D spectroscopy or the DMD-PS approach. (a) Zinc spectrum acquired using conventional 2D spectroscopy, PS spectroscopy or DMD-PS. The graph shows an improvement in signal-to-background (S/B) by a factor of ~20 with PS over conventional 2D spectroscopy, which were recorded with the same exposure time. Using DMD-PS, the S/B is further boosted by nearly two orders of magnitude. (b-d) Comparison between Conv t and DMD-PS from Zinc- (b), Argon- (c) or Cadmium (d) emission lamps, demonstrating improvements in S/B by up to two orders of magnitude. (e-f) Intensity ratio between Conv t and DMD-PS, where it can be observed how the stray light contribution increases near strong spectral lines. Note the logarithmic intensity scale in (a)-(d).
Fig. 7
Fig. 7 Comparison between histograms over spectrally vacant regions in Conv t and DMD-PS. A conventional 2D spectrum and a 2D DMD-PS spectrum of Sodium are shown in (a) and (b) respectively. Note the difference in the logarithmic intensity scale. The green square shows the region of interest from which the histograms in (c) and (d) are extracted. The histograms reveal an improvement in baseline by a factor of ~100.

Tables (1)

Tables Icon

Table 1 Comparison of signal-to-noise (S/N) and signal-to-background (S/B) between Conv t and DMD-PS. The S/N and S/B values are estimated by normalizing each spectra to unity and then extracting either the standard deviation or mean value, respectively, in a spectrally vacant region (see also Fig. 7 ).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , y ) = A λ ( y ) sin ( 2 π ν g y + ϕ λ ( y ) ) + B λ ( y )
I r 1 = sin ( 2 π ν g y )
I r 2 = cos ( 2 π ν g y ) .
I λ 1 = I r 1 I ( λ , y ) = A λ sin ( 2 π ν g y + ϕ λ ( y ) ) sin ( 2 π ν g y ) + B λ sin ( 2 π ν g y )
I λ 2 = I r 2 I ( λ , y ) = A λ sin ( 2 π ν g y + ϕ λ ( y ) ) cos ( 2 π ν g y ) + B λ cos ( 2 π ν g y )
I λ 1 = 1 2 A λ ( cos ( ϕ λ ( y ) ) cos ( 4 π ν g y + ϕ λ ( y ) ) ) + B λ sin ( 2 π ν g y )
I λ 2 = 1 2 A λ ( sin ( ϕ λ ( y ) ) + sin ( 4 π ν g y + ϕ λ ( y ) ) ) + B λ cos ( 2 π ν g y ) .
I ˜ λ 1 = 1 2 A ˜ λ cos ( ϕ λ ( y ) )
I ˜ λ 2 = 1 2 A ˜ λ sin ( ϕ λ ( y ) )
U ν = e ( ν ν c u t ) 8 .
A ˜ λ = 2 ( I ˜ λ 1 ) 2 + ( I ˜ λ 2 ) 2 .

Metrics