Abstract

Metamaterial absorbers consisting of metal, metal-dielectric, or dielectric materials have been realized across much of the electromagnetic spectrum and have demonstrated novel properties and applications. However, most absorbers utilize metals and thus are limited in applicability due to their low melting point, high Ohmic loss and high thermal conductivity. Other approaches rely on large dielectric structures and / or a supporting dielectric substrate as a loss mechanism, thereby realizing large absorption volumes. Here we present a terahertz (THz) all dielectric metasurface absorber based on hybrid dielectric waveguide resonances. We tune the metasurface geometry in order to overlap electric and magnetic dipole resonances at the same frequency, thus achieving an experimental absorption of 97.5%. A simulated dielectric metasurface achieves a total absorption coefficient enhancement factor of FT=140, with a small absorption volume. Our experimental results are well described by theory and simulations and not limited to the THz range, but may be extended to microwave, infrared and optical frequencies. The concept of an all-dielectric metasurface absorber offers a new route for control of the emission and absorption of electromagnetic radiation from surfaces with potential applications in energy harvesting, imaging, and sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metasurface absorbers for uncooled terahertz imaging

Kebin Fan, Jonathan Y. Suen, Xinyu Liu, and Willie J. Padilla
Optica 4(6) 601-604 (2017)

Surface relief structures for a flexible broadband terahertz absorber

Dong-Hyun Kim, Dae-Seon Kim, Sehyun Hwang, and Jae-Hyung Jang
Opt. Express 20(15) 16815-16822 (2012)

Degenerate critical coupling in all-dielectric metasurface absorbers

Xianshun Ming, Xinyu Liu, Liqun Sun, and Willie J. Padilla
Opt. Express 25(20) 24658-24669 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Rayleigh, “XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Phil. Mag. 43, 125–132 (1897).
    [Crossref]
  2. A. Sommerfeld, “On the propagation of electrodynamic waves along a wire,” Ann. Phys. 303, 233–290 (1899).
    [Crossref]
  3. K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Trans. Microw. Theory Techn 32, 961–969 (1984).
    [Crossref]
  4. T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
    [Crossref]
  5. D. Hondros, “On electromagnetic wire waves,” Ann. Phys. 335, 905–950 (1909).
    [Crossref]
  6. D. Hondros and P. Debye, “Electromagnetic waves in the electric wire,” Ann. Phys. 337, 465–476 (1910).
    [Crossref]
  7. H. Zahn, “On the detection of electromagnetic waves on dielectric wires,” Ann. Phys. 354, 907–933 (1916).
    [Crossref]
  8. H. Ruter and O. Schriever, “Electromagnetic waves on dielectric wires,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916).
  9. O. Schriever, “Electromagnetic waves on dielectric wires,” Ann. Phys. 368, 645–673 (1920).
    [Crossref]
  10. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
    [Crossref]
  11. E. Snitzer, “Cylindrical dielectric wavegnide modes,” J. Opt. Soc. Amer. 51, 491–498 (1961).
    [Crossref]
  12. Y. Kobayashi and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microw. Theory Techn. 28, 1077–1085 (1980).
    [Crossref]
  13. R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).
    [Crossref]
  14. J. K. Plourde and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microw. Theory Techn. 29, 754–770 (1981).
    [Crossref]
  15. P. G. Darko Kajfez, Dielectric Resonators (SciTech Publishing, 1998), 2.
  16. M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
    [Crossref]
  17. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill. 4, 230–247 (1994).
  18. C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
    [Crossref]
  19. J. V. D. Groep and a. Polman, “Designing dielectric resonators on substrates : Combining magnetic and electric resonances,” Opt. Express 21, 1253–1257 (2013).
  20. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
    [Crossref]
  21. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref] [PubMed]
  22. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref] [PubMed]
  23. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  24. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  25. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
    [Crossref] [PubMed]
  26. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
    [Crossref]
  27. Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
    [Crossref]

2016 (1)

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

2015 (2)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

2013 (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

J. V. D. Groep and a. Polman, “Designing dielectric resonators on substrates : Combining magnetic and electric resonances,” Opt. Express 21, 1253–1257 (2013).

2011 (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

2010 (2)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

1994 (1)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill. 4, 230–247 (1994).

1984 (1)

K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Trans. Microw. Theory Techn 32, 961–969 (1984).
[Crossref]

1982 (1)

1981 (1)

J. K. Plourde and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microw. Theory Techn. 29, 754–770 (1981).
[Crossref]

1980 (1)

Y. Kobayashi and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microw. Theory Techn. 28, 1077–1085 (1980).
[Crossref]

1961 (1)

E. Snitzer, “Cylindrical dielectric wavegnide modes,” J. Opt. Soc. Amer. 51, 491–498 (1961).
[Crossref]

1939 (1)

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).
[Crossref]

1936 (1)

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
[Crossref]

1920 (1)

O. Schriever, “Electromagnetic waves on dielectric wires,” Ann. Phys. 368, 645–673 (1920).
[Crossref]

1916 (2)

H. Zahn, “On the detection of electromagnetic waves on dielectric wires,” Ann. Phys. 354, 907–933 (1916).
[Crossref]

H. Ruter and O. Schriever, “Electromagnetic waves on dielectric wires,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916).

1910 (1)

D. Hondros and P. Debye, “Electromagnetic waves in the electric wire,” Ann. Phys. 337, 465–476 (1910).
[Crossref]

1909 (1)

D. Hondros, “On electromagnetic wire waves,” Ann. Phys. 335, 905–950 (1909).
[Crossref]

1899 (1)

A. Sommerfeld, “On the propagation of electrodynamic waves along a wire,” Ann. Phys. 303, 233–290 (1899).
[Crossref]

1897 (1)

L. Rayleigh, “XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Phil. Mag. 43, 125–132 (1897).
[Crossref]

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Bhartia, P.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill. 4, 230–247 (1994).

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Carson, J. R.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Cole, M. A.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Debye, P.

D. Hondros and P. Debye, “Electromagnetic waves in the electric wire,” Ann. Phys. 337, 465–476 (1910).
[Crossref]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Groep, J. V. D.

J. V. D. Groep and a. Polman, “Designing dielectric resonators on substrates : Combining magnetic and electric resonances,” Opt. Express 21, 1253–1257 (2013).

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Hondros, D.

D. Hondros and P. Debye, “Electromagnetic waves in the electric wire,” Ann. Phys. 337, 465–476 (1910).
[Crossref]

D. Hondros, “On electromagnetic wire waves,” Ann. Phys. 335, 905–950 (1909).
[Crossref]

Jiang, W.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Kajfez, P. G. Darko

P. G. Darko Kajfez, Dielectric Resonators (SciTech Publishing, 1998), 2.

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Kobayashi, Y.

Y. Kobayashi and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microw. Theory Techn. 28, 1077–1085 (1980).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Ma, Y.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Mailloux, R. J.

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

Mead, S. P.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
[Crossref]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Mongia, R. K.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill. 4, 230–247 (1994).

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Oliner, A. A.

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

Packard, K. S.

K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Trans. Microw. Theory Techn 32, 961–969 (1984).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Plourde, J. K.

J. K. Plourde and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microw. Theory Techn. 29, 754–770 (1981).
[Crossref]

Polman, a.

J. V. D. Groep and a. Polman, “Designing dielectric resonators on substrates : Combining magnetic and electric resonances,” Opt. Express 21, 1253–1257 (2013).

Powell, D. A.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Phil. Mag. 43, 125–132 (1897).
[Crossref]

Ren, C. L.

J. K. Plourde and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microw. Theory Techn. 29, 754–770 (1981).
[Crossref]

Richtmyer, R. D.

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).
[Crossref]

Ruter, H.

H. Ruter and O. Schriever, “Electromagnetic waves on dielectric wires,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916).

Salazar-Palma, M.

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

Sarkar, T. K.

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

Schelkunoff, S. A.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
[Crossref]

Schriever, O.

O. Schriever, “Electromagnetic waves on dielectric wires,” Ann. Phys. 368, 645–673 (1920).
[Crossref]

H. Ruter and O. Schriever, “Electromagnetic waves on dielectric wires,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916).

Sengupta, D. L.

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

Shadrivov, I. V.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Sheng, Y.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Shimabukuro, F.

C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
[Crossref]

Snitzer, E.

E. Snitzer, “Cylindrical dielectric wavegnide modes,” J. Opt. Soc. Amer. 51, 491–498 (1961).
[Crossref]

Sommerfeld, A.

A. Sommerfeld, “On the propagation of electrodynamic waves along a wire,” Ann. Phys. 303, 233–290 (1899).
[Crossref]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Tanaka, S.

Y. Kobayashi and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microw. Theory Techn. 28, 1077–1085 (1980).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

XIe, L.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Xu, W.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Yablonovitch, E.

Yeh, C.

C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
[Crossref]

Yin, G.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

YIng, Y.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Yuan, J.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Zahn, H.

H. Zahn, “On the detection of electromagnetic waves on dielectric wires,” Ann. Phys. 354, 907–933 (1916).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Zhu, J.

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

ACS Nano (1)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband Plasmonic Absorber for Terahertz Waves,” Adv. Opt. Mater. 3, 376–380 (2015).
[Crossref]

Ann. Phys. (5)

D. Hondros, “On electromagnetic wire waves,” Ann. Phys. 335, 905–950 (1909).
[Crossref]

D. Hondros and P. Debye, “Electromagnetic waves in the electric wire,” Ann. Phys. 337, 465–476 (1910).
[Crossref]

H. Zahn, “On the detection of electromagnetic waves on dielectric wires,” Ann. Phys. 354, 907–933 (1916).
[Crossref]

A. Sommerfeld, “On the propagation of electrodynamic waves along a wire,” Ann. Phys. 303, 233–290 (1899).
[Crossref]

O. Schriever, “Electromagnetic waves on dielectric wires,” Ann. Phys. 368, 645–673 (1920).
[Crossref]

Appl. Phys. Lett. (1)

Y. Sheng, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. XIe, Y. YIng, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107, 073903 (2015).
[Crossref]

Bell Syst. Tech. J. (1)

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper - Frequency Wave Guides - Mathematical Theory,” Bell Syst. Tech. J. 15, 310–333 (1936).
[Crossref]

IEEE Trans. Microw. Theory Techn (1)

K. S. Packard, “The Origin of Waveguides: A Case of Multiple Rediscovery,” IEEE Trans. Microw. Theory Techn 32, 961–969 (1984).
[Crossref]

IEEE Trans. Microw. Theory Techn. (2)

Y. Kobayashi and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microw. Theory Techn. 28, 1077–1085 (1980).
[Crossref]

J. K. Plourde and C. L. Ren, “Application of Dielectric Resonators in Microwave Components,” IEEE Trans. Microw. Theory Techn. 29, 754–770 (1981).
[Crossref]

Int. J. Microwave Mill. (1)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Mill. 4, 230–247 (1994).

J. Appl. Phys. (1)

R. D. Richtmyer, “Dielectric resonators,” J. Appl. Phys. 10, 391–398 (1939).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Amer. (1)

E. Snitzer, “Cylindrical dielectric wavegnide modes,” J. Opt. Soc. Amer. 51, 491–498 (1961).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009).
[Crossref]

Nanotechnology (1)

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27, 424003 (2016).
[Crossref]

Opt. Express (1)

J. V. D. Groep and a. Polman, “Designing dielectric resonators on substrates : Combining magnetic and electric resonances,” Opt. Express 21, 1253–1257 (2013).

Phil. Mag. (1)

L. Rayleigh, “XVIII. On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Phil. Mag. 43, 125–132 (1897).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).
[Crossref] [PubMed]

Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein (1)

H. Ruter and O. Schriever, “Electromagnetic waves on dielectric wires,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916).

Other (3)

T. K. Sarkar, R. J. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, History of Wireless (John Wiley & Sons, 2006).
[Crossref]

C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
[Crossref]

P. G. Darko Kajfez, Dielectric Resonators (SciTech Publishing, 1998), 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dependence of absorbance for HE111 (gray dashed curves) and EH111 (black dashed curves) cylindrical modes as a function of geometrical parameters. (a) Simulated frequency dependent absorbance with dimensions of height h=50µm, radius r=40µm, and a periodicity of p=210µm. The first absorption peak at 1.186 THz results from the magnetic dipole resonance and the second peak at 1.294 THz is due to the electric dipole resonance. (b) Dependence of the absorbance on frequency and radius with h=50µm and p=210 µm, plotted as a color map (color bar). (c) Dependence of the absorbance on frequency and height with r=60µm and p=210 µm. (d) Dependence of the absorbance on frequency and periodicity with h=50µm and r=60 µm.

Fig. 2
Fig. 2

(a) Simulated spectral reflectance (blue), transmittance (black) and absorbance (red). The inset plot shows the unit cell geometry of the design, where r=62.5 µm, p=172 µm, h=50 µm and t=35 µm. (b) Electric field in the xz-plane (right half) and the magnetic field in the yz-plane (left half), both shown at the same phase and resonant frequency.

Fig. 3
Fig. 3

(a) Measured reflectance (blue), transmittance (black) and absorbance (red). (b) Simulated (red dashed curve) and measured (red solid curve) absorbance. The inset shows the power loss density distribution in cross section. (c) SEM image of the patterned SOI sample via deep reactive ion etching (view angle is 45°). The inset image shows the final fabricated sample. (d) Simulated absorbance of a substrate free dielectric metasurface which achieves A(1.05THz)=99.6% and has dimensions of h=50µm, r=60µm, and p=210µm. The inset shows a cross sectional view of the power loss density.

Fig. 4
Fig. 4

(a) Cross sectional view of the simulated electric field distribution in a plane normal to the y-axis at the center of the disk. (b) Cross sectional view of the simulated magnetic field distribution in a plane normal to the x-axis, at the center of the disk. (c) Top view of the simulated electric field distribution at a plane inside the disk, normal to z-axis, and 11.76 µm from the bottom of the disk. (d) Simulated magnetic field distribution from top view (same plane as (c)).

Fig. 5
Fig. 5

(a) Simulated reflectance (black curve), transmittance (blue curve) and absorbance (red curve) of 50µm thick Boron-doped silicon. (b) Absorption coefficient (α, solid curve) and imaginary part of refractive index (Imag(n), dashed curve) of both bulk silicon (blue) and metasurface (red).

Fig. 6
Fig. 6

(a) Calculated (red solid curve) and simulated (blue open circle) radius as a function of dielectric constant. The simulated results are fit with power law (red dashed curve). (b) Calculated (red solid curve) and simulated (blue open circle) height as a function of dielectric constant. The simulated results are fit with power law (red dashed curve). The periodicity for both simulations were retained at 210 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ g = λ 0 ϵ r = 2 π ω 0 c ϵ r .
h = λ g 2 .
k r = k g 1 1 ϵ r ,
r = 3.83 k r .
F α = α m m α S i ,
F T = α m m α S i F 1 = 140 .
h = λ g 2 = λ 0 2 ϵ r 1 2 = c 2 f 0 ϵ r 1 2
r = 3.83 k r = 3.83 λ g 2 π 1 1 ϵ r = 3.83 λ 0 2 π ( ϵ r 1 ) 1 2 = 3.83 c 2 π f 0 ( ϵ r 1 ) 1 2

Metrics