Abstract

We develop an efficient green upconversion (UC) β-NaYF4:20%Yb3+,2%Er3+ microcrystal with well controlled morphology and size by hydrothermal method using two different chelating agents of CIT and EDTA-2Na via a simple ion-exchange reaction. Importantly, the UC emission efficiency of newly developed CIT and EDTA-2Na β-NaYF4:20%Yb3+,2%Er3+ microcrystals is almost as strong as that of commercial counterpart by solid-state method. A proof-of-concept β-NaYF4:20%Yb3+,2%Er3+ microcrystal waveguide is demonstrated to extend their applications in modern micro-optoelectronics. The local ion-redistribution process during the ion-exchange reaction, which effectively disperses the locally clustered Yb3+, accounts for the enormously enhanced UC emission in β-NaYF4:20%Yb3+,2%Er3+ microcrystals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation

Kezhi Zheng, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin
Opt. Express 18(3) 2934-2939 (2010)

Effect of EDTA on the formation and upconversion of NaYF4:Yb3+/ Er3+

Ruisen Zhou and Xia Li
Opt. Mater. Express 6(4) 1313-1320 (2016)

Upconversion emissions from high-energy states of Eu3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 microcrystals under 980 nm excitation

Lili Wang, Zhenyu Liu, Zhe Chen, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Express 19(25) 25471-25478 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Menyuk, “NaYF4:Yb,Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
    [Crossref]
  2. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
    [Crossref] [PubMed]
  3. M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
    [Crossref]
  4. C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
    [Crossref]
  5. D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
    [Crossref]
  6. H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
    [Crossref]
  7. N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
    [Crossref] [PubMed]
  8. G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
    [Crossref] [PubMed]
  9. S. Ye, J. Song, D. Wang, Y. Tian, J. Qu, and H. Niu, “Reduced photon quenching in Ce-doped NaYF4:Yb/Ho upconversion nanoparticles with core/shell structure,” Chin. Opt. Lett. 14(2), 021601 (2016).
    [Crossref]
  10. R. A. McFarlane, “High-power visible upconversion laser,” Opt. Lett. 16(18), 1397–1399 (1991).
    [Crossref] [PubMed]
  11. X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
    [Crossref] [PubMed]
  12. Y. Zhang, Q. Z. Zhao, H. H. Pan, C. W. Wang, J. Qian, and Z. S. Wang, “Simultaneous upconversion luminescence and color centers generated by femtosecond laser irradiation of LiF crystals,” Chin. Opt. Lett. 14(8), 083201 (2016).
    [Crossref]
  13. S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Single-mode hybrid AlGaInAs/Si octagonal-ring microlaser with stable output,” Chin. Opt. Lett. 14(3), 031402 (2016).
    [Crossref]
  14. Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
    [Crossref] [PubMed]
  15. J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
    [Crossref]
  16. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  17. B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
    [Crossref] [PubMed]
  18. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
    [PubMed]
  19. S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
    [Crossref]
  20. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  21. Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
    [Crossref]
  22. A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
    [Crossref] [PubMed]
  23. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [Crossref] [PubMed]
  24. D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
    [Crossref] [PubMed]
  25. G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
    [Crossref]
  26. G. J. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(4), 691–695 (2014).
    [Crossref]
  27. D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
    [Crossref]
  28. J. M. F. Vandijk and M. F. H. Schuurmans, “On the nonradiative and radiative eecay-rates and a modified exponential energy-gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317–5323 (1983).
    [Crossref]
  29. J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
    [Crossref]
  30. J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
    [Crossref] [PubMed]
  31. G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
    [Crossref] [PubMed]
  32. R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
    [Crossref] [PubMed]
  33. T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
    [Crossref] [PubMed]
  34. C. Dong and F. C. van Veggel, “Cation exchange in lanthanide fluoride nanoparticles,” ACS Nano 3(1), 123–130 (2009).
    [Crossref] [PubMed]
  35. C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
    [Crossref] [PubMed]
  36. C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
    [Crossref]

2017 (1)

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

2016 (7)

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Y. Zhang, Q. Z. Zhao, H. H. Pan, C. W. Wang, J. Qian, and Z. S. Wang, “Simultaneous upconversion luminescence and color centers generated by femtosecond laser irradiation of LiF crystals,” Chin. Opt. Lett. 14(8), 083201 (2016).
[Crossref]

S. Sui, M. Tang, Y. Yang, J. Xiao, Y. Du, and Y. Huang, “Single-mode hybrid AlGaInAs/Si octagonal-ring microlaser with stable output,” Chin. Opt. Lett. 14(3), 031402 (2016).
[Crossref]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

S. Ye, J. Song, D. Wang, Y. Tian, J. Qu, and H. Niu, “Reduced photon quenching in Ce-doped NaYF4:Yb/Ho upconversion nanoparticles with core/shell structure,” Chin. Opt. Lett. 14(2), 021601 (2016).
[Crossref]

2015 (3)

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

2014 (4)

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

G. J. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(4), 691–695 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

2013 (5)

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
[Crossref] [PubMed]

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

2012 (2)

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

2011 (1)

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

2009 (1)

C. Dong and F. C. van Veggel, “Cation exchange in lanthanide fluoride nanoparticles,” ACS Nano 3(1), 123–130 (2009).
[Crossref] [PubMed]

2007 (3)

G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
[Crossref] [PubMed]

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

2006 (2)

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

2005 (1)

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

2002 (1)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

1992 (1)

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

1991 (1)

1983 (1)

J. M. F. Vandijk and M. F. H. Schuurmans, “On the nonradiative and radiative eecay-rates and a modified exponential energy-gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317–5323 (1983).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1972 (1)

N. Menyuk, “NaYF4:Yb,Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Assaaoudi, H.

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

Bai, G.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Banski, M.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Bednarkiewicz, A.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Biner, D.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

Blasiak, B.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Chai, Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Chen, B.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

Chen, Y.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Chi, D.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Cho, Y.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Choi, H. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Choi, S. Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Cousseins, J. C.

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

Cui, S.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Dantelle, G.

G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
[Crossref] [PubMed]

Demopoulos, G. P.

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Dong, C.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

C. Dong and F. C. van Veggel, “Cation exchange in lanthanide fluoride nanoparticles,” ACS Nano 3(1), 123–130 (2009).
[Crossref] [PubMed]

Du, Y.

Dyck, N.

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

Dyck, N. C.

N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
[Crossref] [PubMed]

Fan, J.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Fan, S.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Feng, Y.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Fischer, S.

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

Fournier, M. T.

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

Gao, D.

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

Gao, G. J.

G. J. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(4), 691–695 (2014).
[Crossref]

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Gao, W.

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

Goldschmidt, J. C.

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

Grimm, J.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

Güdel, H. U.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

Haase, M.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Han, Y.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Hao, J.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

He, E.

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Hor, T. S.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Hu, L.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Huang, Y.

Hyeon, T.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Jiao, M.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Jin, L.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Jo, H. L.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Johnson, J. C.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Jung, T.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Karbowiak, M.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Kepinski, L.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Kim, H. M.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Kim, J.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Klare, J. P.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Knutsen, K. P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Komban, R.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Kong, D. Y.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Kong, W.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Kong, X. G.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Korinek, A.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Krämer, K. W.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

Lau, S. P.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Lee, H.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Lee, K. T.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Li, C. X.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Li, H.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Li, M.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Li, R.

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Lin, J.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Liu, G.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Liu, L.

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

Liu, R. S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Liu, X.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Lü, W.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

MacDonald, M. A.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Mahiou, R.

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

Mai, H. X.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

McFarlane, R. A.

Mech, A.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Menyuk, N.

N. Menyuk, “NaYF4:Yb,Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Misiewicz, J.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Mortier, M.

G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
[Crossref] [PubMed]

Nam, S. H.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Niu, H.

Noculak, A.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Nordmann, J.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Pan, H. H.

Pawlik, G.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Peng, M. Y.

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Pichaandi, J.

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

Podhorodecki, A.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Qian, J.

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Qin, G.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Qu, J.

Quan, Z. W.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Regier, T.

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

Saykally, R. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schuurmans, M. F. H.

J. M. F. Vandijk and M. F. H. Schuurmans, “On the nonradiative and radiative eecay-rates and a modified exponential energy-gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317–5323 (1983).
[Crossref]

Shan, G.-B.

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shao, B.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Shen, Y.

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

Si, R.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Sojka, B.

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Song, H.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Song, J.

Song, Y.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

Steinhoff, H. J.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Strek, W.

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Suh, Y. D.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Sui, S.

Sun, H.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Sun, L. D.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Sun, T.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Sun, Y. J.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Suyver, J. F.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

Tang, M.

Tian, L. J.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Tian, Y.

Tomanek, B.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Tu, D.

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

van Veen, M. K.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

van Veggel, F. C.

N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
[Crossref] [PubMed]

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

C. Dong and F. C. van Veggel, “Cation exchange in lanthanide fluoride nanoparticles,” ACS Nano 3(1), 123–130 (2009).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Vandijk, J. M. F.

J. M. F. Vandijk and M. F. H. Schuurmans, “On the nonradiative and radiative eecay-rates and a modified exponential energy-gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317–5323 (1983).
[Crossref]

Vivien, D.

G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
[Crossref] [PubMed]

Voss, B.

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Wang, C. W.

Wang, D.

Wang, F.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Wang, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Wang, S.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Wang, Z. S.

Wei, J. X.

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Wondraczek, L.

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

G. J. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(4), 691–695 (2014).
[Crossref]

Xiao, J.

Xu, W.

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Yan, C. H.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yan, Z. G.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yang, J.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Yang, P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Yang, P. P.

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

Yang, Y.

Yang, Z.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Ye, S.

Yin, Z.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Yoo, B.

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

You, H.

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

You, L. P.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yu, S. F.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Yu, Y.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Yuan, J.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Yuan, S.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Zakaria, D.

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

Zhang, H.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Zhang, P.

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Zhang, W.

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Zhang, X.

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

Zhang, Y.

Zhang, Y. W.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zhao, J. W.

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Zhao, Q. Z.

Zhao, Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Zheng, H.

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

Zhou, D.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

Zhu, Y.

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

N. C. Dyck, F. C. van Veggel, and G. P. Demopoulos, “Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing,” ACS Appl. Mater. Interfaces 5(22), 11661–11667 (2013).
[Crossref] [PubMed]

ACS Nano (1)

C. Dong and F. C. van Veggel, “Cation exchange in lanthanide fluoride nanoparticles,” ACS Nano 3(1), 123–130 (2009).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Adv. Mater. (2)

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28(34), 7472–7477 (2016).
[Crossref] [PubMed]

Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, and H. Song, “Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect,” Adv. Mater. 28(13), 2518–2525 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

D. Tu, Y. Liu, H. Zhu, R. Li, L. Liu, and X. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl. 52(4), 1128–1133 (2013).
[Crossref] [PubMed]

R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. J. Steinhoff, and M. Haase, “An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals,” Angew. Chem. Int. Ed. Engl. 51(26), 6506–6510 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

N. Menyuk, “NaYF4:Yb,Er—an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Chem. Mater. (2)

C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong, and J. Lin, “Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources,” Chem. Mater. 19(20), 4933–4942 (2007).
[Crossref]

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A facile method to make NaYF4:Yb,Tm@NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Chin. Opt. Lett. (3)

CrystEngComm (1)

H. Assaaoudi, G.-B. Shan, N. Dyck, and G. P. Demopoulos, “Annealing-induced ultra-efficient NIR-to-VIS upconversion of nano-/micro-scale α and β-NaYF4:Er3+,Yb3+ crystals,” CrystEngComm 15(23), 4739–4746 (2013).
[Crossref]

Inorg. Chem. (1)

B. Shao, Y. Feng, Y. Song, M. Jiao, W. Lü, and H. You, “Topotactic transformation route to monodisperse β-NaYF4:Ln3+ microcrystals with luminescence properties,” Inorg. Chem. 55(4), 1912–1919 (2016).
[Crossref] [PubMed]

J. Alloys Compd. (2)

D. Gao, X. Zhang, H. Zheng, W. Gao, and E. He, “Yb3+/Er3+ co-doped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion,” J. Alloys Compd. 554, 395–399 (2013).
[Crossref]

D. Zakaria, M. T. Fournier, R. Mahiou, and J. C. Cousseins, “On Eu3+ luminescence in the hexagonal NaYF4 phase,” J. Alloys Compd. 188, 250–254 (1992).
[Crossref]

J. Am. Chem. Soc. (1)

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. M. F. Vandijk and M. F. H. Schuurmans, “On the nonradiative and radiative eecay-rates and a modified exponential energy-gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317–5323 (1983).
[Crossref]

J. Lumin. (1)

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

G. J. Gao, J. X. Wei, Y. Shen, M. Y. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

G. J. Gao and L. Wondraczek, “Heavily Eu3+-doped boroaluminosilicate glasses for UV/blue-to-red photoconversion with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(4), 691–695 (2014).
[Crossref]

J. Mater. Sci. (1)

S. Fan, S. Wang, W. Xu, M. Li, H. Sun, and L. Hu, “Enormously enhanced upconversion emission in β-NaYF4:20Yb,2Er microcrystals via Na+ ion exchange,” J. Mater. Sci. 52(2), 869–877 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

M. Karbowiak, A. Mech, A. Bednarkiewicz, W. Stręk, and L. Kępiński, “Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties,” J. Phys. Chem. Solids 66(6), 1008–1019 (2005).
[Crossref]

Nanoscale (2)

C. Dong, J. Pichaandi, T. Regier, and F. C. van Veggel, “The unexpected structures of “core-shell” and “alloy” LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy,” Nanoscale 3(8), 3376–3384 (2011).
[Crossref] [PubMed]

A. Podhorodecki, M. Banski, A. Noculak, B. Sojka, G. Pawlik, and J. Misiewicz, “On the nature of carrier relaxation and ion-ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals--effect of the surface,” Nanoscale 5(1), 429–436 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, J. W. Zhao, and H. Zhang, “Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals,” Nanotechnology 18(27), 275609 (2007).
[Crossref]

Nat. Commun. (2)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[PubMed]

X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, J. Fan, S. F. Yu, and F. Wang, “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun. 7, 10304 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

G. Dantelle, M. Mortier, and D. Vivien, “EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics,” Phys. Chem. Chem. Phys. 9(41), 5591–5598 (2007).
[Crossref] [PubMed]

T. Jung, H. L. Jo, S. H. Nam, B. Yoo, Y. Cho, J. Kim, H. M. Kim, T. Hyeon, Y. D. Suh, H. Lee, and K. T. Lee, “The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb3+,Er3+,” Phys. Chem. Chem. Phys. 17(20), 13201–13205 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure and morphology of β-NaYF4:20%Yb3+,2%Er3+ microcrystals. a) Powder X-ray diffraction (XRD) patterns. Scanning electron microscope (SEM) images for b) hydrothermal synthesized as-prepared and c) ion-exchange modified (IEM) β-NaYF4:20%Yb3+,2%Er3+ microcrystals and d) solid-state (SS) reference.

Fig. 2
Fig. 2

UC emission properties of β-NaYF4:20%Yb3+,2%Er3+ microcrystals. a) UC emission spectra for the hydrothermal synthesized as-prepared and IEM β-NaYF4:20%Yb3+,2%Er3+ microcrystals, and SS reference. The insert photographs in a) show the significant improvement of UC emission intensity after IEM. Both the spectra and photographs are obtained under a 3 W/cm2 980 nm laser illumination. b) CIE 1931 chromaticity map with color coordinate of IEM β-NaYF4:20%Yb3+,2%Er3+ microcrystal.

Fig. 3
Fig. 3

Single microcrystal waveguide. a) UC emission spectra for the as-prepared and IEM β-NaYF4:20%Yb3+,2%Er3+ (EDTA-2Na and CIT). The inset photographs show the corresponding UC emission under a 3 W/cm2 980 nm laser illumination. SEM images for b) as-prepared and c) IEM β-NaYF4:20%Yb3+,2%Er3+ (EDTA-2Na). d) Waveguide experiment setup. e) Pump power density (5 × 103 W/cm2 to 6 × 105 W/cm2) dependent UC emission spectra under 980 nm continuous wave (CW) laser irradiation for a single IEM β-NaYF4:20%Yb3+,2%Er3+ microcrystal (EDTA-2Na). f) Double logarithmic plot of pump power density dependence of UC emission intensity in green and red and corresponding linear fitting curves of the experimental data. Confocal images with power density of g) 2 × 104 W/cm2 and h) 1 × 105 W/cm2, respectively. i) Illustration of the waveguiding mode in a single β-NaYF4:20%Yb3+,2%Er3+ microcrystal.

Fig. 4
Fig. 4

UC enhancement origin. a) Normalized photoluminescence spectra for as-prepared and IEM β-NaYF4:2%Eu3+ excited at 394 nm. b) Decay curves of Yb3+ 980 nm emission excited at 940 nm for as-prepared and IEM β-NaYF4:20%Yb3+. c) Experimental Yb–F shell extended X-ray absorption fine structure (EXAFS) spectra in k1-space for as-prepared and IEM β-NaYF4:20%Yb3+. d) The enlarged distance distribution data corresponding to Yb3+ second coordination shell. e) EPR spectra for as-prepared and IEM β-NaYF4:1%Yb3+. The arrow and the box indicate the increase of the intensity at ~1800 Gauss. f) Decay curves of Er3+ 540 nm emission excited at 488 nm for as-prepared and IEM β-NaYF4:20%Yb3+,2%Er3+.

Fig. 5
Fig. 5

Proposed UC mechanism. a) Schematic of energy transfer UC mechanism for β-NaYF4:20%Yb3+,2%Er3+. GSA, EM, ET and BET represent ground state absorption, energy migration, energy transfer and back energy transfer, respectively. b) Schematic of UC quenching process induced by Yb3+ clusters.

Metrics