Abstract

An improved high-order delta-sigma modulator with multi-level quantizer is proposed to enable carrier aggregation of 4G-LTE signals in mobile fronthaul. Different from conventional delta-sigma modulation-based digital mobile fronthaul, a 2-bit quantizer is employed to reduce the quantization noise, which enabling the transmission via PAM-4 based IM-DD channel. Moreover, we employ the 4th-order high-pass filter (HPF) to replace the 1st-order HPF in the conventional delta-sigma modulator, resulting in a much better noise shaping performance. In the experiment, a PAM-4 based mobile fronthaul transmission of 32 aggregated 4G-LTE signals with a CPRI equivalent data rate of 39.32-Gb/s is demonstrated in a single-λ 10-Gb/s IM-DD channel. Significant improvement of 68% is achieved in the average EVM performance compared to the previous delta-sigma modulation-based digital mobile fronthaul.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

Delta-sigma-modulated IFoF transmission system assisted by a correlative-level encoding technique

Seunghyun Jang, Bonghyuk Park, Songcheol Hong, Kwang-Seon Kim, and Kwang-Chun Lee
Opt. Express 26(23) 29916-29930 (2018)

References

  • View by:
  • |
  • |
  • |

  1. China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper v. 2.6, (2013).
  2. A. Pizzinat, P. Chanclou, T. Diallo, and F. Saliou, “Things you should know about fronthaul,” inProceedings of European Conference on Optical Communications(2014), paper Tu.4.2.1.
  3. N. Cvijetic, A. Tanaka, K. Kanonakis, and T. Wang, “SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era,” Opt. Express 22(17), 20809–20815 (2014).
    [Crossref] [PubMed]
  4. Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over selfseeded WDMPON in commercial LTE environment,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.6.
  5. N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile fronthaul employing Ethernetbased TDMPON system for small cells,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.1.
  6. C. P. R. I. Specification, V6.1, “Common Public Radio Interface (CPRI); Interface Specification,” (2014).
  7. X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.2.
    [Crossref]
  8. S. Cho, H. Park, H. Chung, K. Doo, S. Sang, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” inProceedings of Optical Fiber Communication Conference (2014), paper Tu2B.6.
    [Crossref]
  9. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-µs processing latency,” inProceedings of European Conference on Optical Communications (2015), paper We.4.4.3.
  10. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI-equivalent data rate in a single 10-GHz-bandwidth IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.3.
    [Crossref]
  11. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE / 30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.2.
    [Crossref]
  12. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
    [Crossref]
  13. M. Li, R. Hu, X. Xiao, Z. Li, Y. Yu, J. Yu, Q. Yang, and S. Yu, “Transmission of 40 Gb/s (4×10 Gb/s) PAM-4 signal over 150 km SSMF using MZI based silicon modulator,” inProceedings of Asia Communications and Photonics Conference (2016), paper ATh4D.5.
  14. B. Brandt and B. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” J. Solid-State Circuits 26(12), 1746–1756 (1991).
    [Crossref]
  15. T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
    [Crossref]

2016 (1)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

2014 (1)

1993 (1)

T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
[Crossref]

1991 (1)

B. Brandt and B. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” J. Solid-State Circuits 26(12), 1746–1756 (1991).
[Crossref]

Brandt, B.

B. Brandt and B. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” J. Solid-State Circuits 26(12), 1746–1756 (1991).
[Crossref]

Cvijetic, N.

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Kanonakis, K.

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Li, H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Luo, M.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Maruyama, Y.

T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
[Crossref]

Okamoto, T.

T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
[Crossref]

Tanaka, A.

Wang, T.

Wooley, B.

B. Brandt and B. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” J. Solid-State Circuits 26(12), 1746–1756 (1991).
[Crossref]

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Yang, Q.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Yu, S.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

Yukawa, A.

T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
[Crossref]

IEEE Photonics J. (1)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 7903907 (2016).
[Crossref]

J. Solid-State Circuits (2)

B. Brandt and B. Wooley, “A 50-MHz multibit sigma-delta modulator for 12-b 2-MHz A/D conversion,” J. Solid-State Circuits 26(12), 1746–1756 (1991).
[Crossref]

T. Okamoto, Y. Maruyama, and A. Yukawa, “A stable high-order delta-sigma modulator with an FIR spectrum dstributor,” J. Solid-State Circuits 28(7), 730–735 (1993).
[Crossref]

Opt. Express (1)

Other (11)

M. Li, R. Hu, X. Xiao, Z. Li, Y. Yu, J. Yu, Q. Yang, and S. Yu, “Transmission of 40 Gb/s (4×10 Gb/s) PAM-4 signal over 150 km SSMF using MZI based silicon modulator,” inProceedings of Asia Communications and Photonics Conference (2016), paper ATh4D.5.

China Mobile Research Institute, “C-RAN: The road towards green RAN,” whitepaper v. 2.6, (2013).

A. Pizzinat, P. Chanclou, T. Diallo, and F. Saliou, “Things you should know about fronthaul,” inProceedings of European Conference on Optical Communications(2014), paper Tu.4.2.1.

Y. Ma, Z. Xu, H. Lin, M. Zhou, H. Wang, C. Zhang, J. Yu, and X. Wang, “Demonstration of CPRI over selfseeded WDMPON in commercial LTE environment,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.6.

N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile fronthaul employing Ethernetbased TDMPON system for small cells,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.1.

C. P. R. I. Specification, V6.1, “Common Public Radio Interface (CPRI); Interface Specification,” (2014).

X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.2.
[Crossref]

S. Cho, H. Park, H. Chung, K. Doo, S. Sang, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” inProceedings of Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-µs processing latency,” inProceedings of European Conference on Optical Communications (2015), paper We.4.4.3.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI-equivalent data rate in a single 10-GHz-bandwidth IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.3.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G. K. Chang, “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE / 30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 C-RAN architecture, including mobile backhaul (MBH) and mobile fronthaul (MFH).
Fig. 2
Fig. 2 (a) PAM-4 based MFH employing high order delta-sigma modulation (b) structure of the proposed high order delta-sigma modulator.
Fig. 3
Fig. 3 Illustration of comparison between conventional delta-sigma modulation and the high order delta-sigma modulation using the same OSR.
Fig. 4
Fig. 4 Experimental setup for the transmission of 32 4G-LTE signals by carrier aggregation and delta-sigma modulation, (a) aggregated spectrum of 32 4G-LTE signals with 1.25-GSa/s sampling rate, and (b) received spectrum of an 8-times oversampling delta-sigma modulated signal with 10-GSa/s sampling rate.
Fig. 5
Fig. 5 Signal waveforms before delta-sigma modulation (blue), after delta-sigma modulation (black) and after received LPF (red) with 1-bit, 1.5-bit, 2-bit and 2.5-bit quantization, respectively.
Fig. 6
Fig. 6 Measured EVM of each CC using 1st order HPF, OSR = 8, and different quantization resolutions from 1-bit to 2.5-bit, respectively.
Fig. 7
Fig. 7 Measured EVM of each CC at optical back to back, using 2-bit quantization, OSR = 8, and various 1st, 2nd and 4th order HPF, respectively.
Fig. 8
Fig. 8 Measured EVM of each component carriers using: 1) OSR = 8, 1-bit, 1st order 2) OSR = 8, 2-bit, 4th order, 3) OSR = 6, 2-bit, 4th-order, and 4) OSR = 4, 2-bit, 4th order.
Fig. 9
Fig. 9 Measured EVM of each component carrier after 20-km transmission using 2-bit quantization, 8 times oversampling and 4th order modulator.
Fig. 10
Fig. 10 Mean EVM of all CCs as a function of (a) OSNR, and (b) received optical power, respectively.

Metrics