Abstract

We report on the fabrication of sapphire samples containing platinum nanoparticles (Pt-NPs) and platinum ions (Pt-ions) and the investigation of their third-order nonlinear (NL) optical properties. The presence of Pt-NPs was confirmed by electronic microscopy and by the linear absorption spectrum that shows a localized surface plasmon band centered at 290 nm. A sample without NPs but containing Pt-ions was also studied. The absorptive and refractive contributions to the nonlinearity were studied using the z-scan technique with 100 fs pulses at 800nm. The experiments revealed a NL refractive index, +3.8×10−13 < n2 < +1.3×10−12 cm2/W and NL absorption coefficient (β < 9.3 cm/GW). The results show enhancement of about five orders of magnitude with respect to the NL refractive index of sapphire.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire

O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda
Opt. Mater. Express 4(1) 92-100 (2014)

Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica

B. Can-Uc, R. Rangel-Rojo, L. Rodriguez-Fernandez, and A. Oliver
Opt. Mater. Express 3(12) 2012-2021 (2013)

Third-order nonlinear optical properties exhibited by a bilayer configuration of silver nanoparticles integrated to silicon nanocrystals embedded in ion-implanted silica

Alejandra López-Suárez, Carlos Torres-Torres, Bonifacio Can-Uc, Raúl Rangel-Rojo, Carlos E. Valencia, and Alicia Oliver
J. Opt. Soc. Am. B 32(5) 805-811 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
    [Crossref]
  2. S. A. Meier, Plasmonics Fundamentals and Applications (Springer, 2007).
  3. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
    [Crossref]
  4. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
    [Crossref]
  5. S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).
    [Crossref] [PubMed]
  6. T. J. Antosiewicz and S. P. Apell, “Plasmonic glasses: Optical properties of amorphous metal-dielectric composites,” Opt. Express 22, 2013–2042 (2014).
    [Crossref]
  7. C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
    [Crossref]
  8. T. V. Murzina, I. A. Kolmychek, J. Wouters, T. Verbiest, and O. A. Aktsipetrov, “Plasmon-assisted enhancement of third order nonlinear optical effects in core-shell nanoparticles,” J. Opt. Soc. Am. B 29, 138–143 (2012).
    [Crossref]
  9. R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
    [Crossref]
  10. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
    [Crossref]
  11. A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
    [Crossref]
  12. A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 25, 7659–7666 (2015).
    [Crossref]
  13. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [Crossref] [PubMed]
  14. B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3(12), 2012–2021 (2013).
    [Crossref]
  15. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
    [Crossref]
  16. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
    [Crossref]
  17. A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).
  18. A. L. Stepanov and I. B. Khaibullin, “Fabrication of metal nanoparticles in sapphire by low-energy ion implantation,” Rev. Adv. Mater. Sci. 9, 109–129 (2005).
  19. S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
    [Crossref]
  20. Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
    [Crossref]
  21. R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
    [Crossref]
  22. G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
    [Crossref]
  23. A. Chehreghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: Saturable and reverse saturable absorption,” Laser Phys. 24, 015901 (2014).
    [Crossref]
  24. B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
    [Crossref] [PubMed]
  25. H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
    [Crossref]
  26. A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
    [Crossref]
  27. R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
    [Crossref]
  28. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
    [Crossref]
  29. S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).
  30. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
    [Crossref] [PubMed]
  31. J. R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Material Analysis, (Material Research Society, 1995).
  32. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
    [Crossref] [PubMed]
  33. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  34. D. E. Gray, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, Inc., 1972).
  35. M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
    [Crossref]
  36. H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
    [Crossref]
  37. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express,  2(12), 1776–1790 (2012).
    [Crossref]
  38. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express,  13(20), 7976–7981, (2005).
    [Crossref] [PubMed]
  39. M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
    [Crossref]
  40. R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
    [Crossref]
  41. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
    [Crossref]
  42. G. I. Stegeman, “All-optical devices: materials tequirements,” Proc. SPIE 1852, 75–89 (1993).
    [Crossref]
  43. I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
    [Crossref]

2016 (1)

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

2015 (3)

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 25, 7659–7666 (2015).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref] [PubMed]

2014 (3)

A. Chehreghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: Saturable and reverse saturable absorption,” Laser Phys. 24, 015901 (2014).
[Crossref]

T. J. Antosiewicz and S. P. Apell, “Plasmonic glasses: Optical properties of amorphous metal-dielectric composites,” Opt. Express 22, 2013–2042 (2014).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

2013 (3)

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3(12), 2012–2021 (2013).
[Crossref]

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

2012 (4)

2011 (1)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

2010 (1)

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

2009 (3)

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

2007 (1)

2006 (3)

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

2005 (3)

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

A. L. Stepanov and I. B. Khaibullin, “Fabrication of metal nanoparticles in sapphire by low-energy ion implantation,” Rev. Adv. Mater. Sci. 9, 109–129 (2005).

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express,  13(20), 7976–7981, (2005).
[Crossref] [PubMed]

2004 (1)

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

2003 (1)

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

2002 (1)

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

2000 (1)

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

1999 (1)

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

1998 (1)

1994 (1)

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

1993 (1)

G. I. Stegeman, “All-optical devices: materials tequirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

1992 (2)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

1991 (1)

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

Aitchison, J. S.

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

Aktsipetrov, O. A.

Alfano, R.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Angel-Valenzuela, J. L.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Antosiewicz, T. J.

Apell, S. P.

Banks, C.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Boatner, L.

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Cai, W.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
[Crossref]

Can-Uc, B.

Chang, Q.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

Cheang-Wong, J. C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Chehreghani, A.

A. Chehreghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: Saturable and reverse saturable absorption,” Laser Phys. 24, 015901 (2014).
[Crossref]

Chen, F.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Crespo-Sosa, A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Curley, M. J.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

de Araújo, C. B.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 25, 7659–7666 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Djurisic, A. B.

Dominguez, C. T.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Dorsinville, R.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Elazar, J. M.

Ensley, T. R.

Falconieri, M.

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

Fan, G.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Ferdinandus, M. R.

Fernández-Hernández, R. C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

Fishman, D. A.

Flores-Romero, E.

Fu, G.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[Crossref]

Gao, R.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Gao, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Gleason-Villagran, R.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

Gnoli, A.

Gomes, A. S. L.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Graener, H.

Gray, D. E.

D. E. Gray, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, Inc., 1972).

Guo, Z.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Hagan, D. J.

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express,  2(12), 1776–1790 (2012).
[Crossref]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
[Crossref]

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

Haglund, R. J.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Hamanaka, Y.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

Hayashi, N.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

Hensley, D. K.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Hu, H.

Huang, J. P.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
[Crossref]

Ila, D.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Jiang, Y.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Jiao, W.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

Kassab, L. R. P.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Khaibullin, I. B.

A. L. Stepanov and I. B. Khaibullin, “Fabrication of metal nanoparticles in sapphire by low-energy ion implantation,” Rev. Adv. Mater. Sci. 9, 109–129 (2005).

Kip, D.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Kolmychek, I. A.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[Crossref]

Lange, J.

Li, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Liu, H.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Liu, S.

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Lopez, R.

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

López-Suares, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

López-Suárez, A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

Lu, Q.M.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Ma, H.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Magruder, R.

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

Magruder, R. I.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Majewski, M. L.

Major, A.

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

Márquez, H.

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

Meier, S. A.

S. A. Meier, Plasmonics Fundamentals and Applications (Springer, 2007).

Meldrum, A.

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

Mohan, S.

Murzina, T. V.

Nakamura, A.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

Nastasi, M.

J. R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Material Analysis, (Material Research Society, 1995).

Nikolakakos, I. P.

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

Nóguez, C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Ohnuma, M.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

Oliver, A.

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3(12), 2012–2021 (2013).
[Crossref]

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Omi, S.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

Oyoshi, K.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

Poker, D. B.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Qu, S.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Rakic, A. D.

Rangel-Rojo, R.

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3(12), 2012–2021 (2013).
[Crossref]

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
[Crossref] [PubMed]

Razzari, L.

Reichert, M.

Ren, S.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Reyes-Esqueda, J. A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Reyna, A. S.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 25, 7659–7666 (2015).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

Ribeiro, S. J. L.

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

Rickards, J.

Righini, M.

Rodriguez-Fernandez, L.

Rodriguez-Fernández, L.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

Rodríguez-Fernández, L.

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3(12), 2012–2021 (2013).
[Crossref]

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rodríguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

Román-Velasquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Romero, E.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Rter, C. E.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Said, T. T.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

Salazar, D.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Santiago-Ramírez, A. L.

Sarkisov, S. S.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Sato, R.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

Seifert, G.

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
[Crossref]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
[Crossref]

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

Silva-Pereyra, H. G.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Smith, E. W.

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

Song, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “All-optical devices: materials tequirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Stepanov, A. L.

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

A. L. Stepanov and I. B. Khaibullin, “Fabrication of metal nanoparticles in sapphire by low-energy ion implantation,” Rev. Adv. Mater. Sci. 9, 109–129 (2005).

Svetchnikov, V. L.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Takeda, Y.

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

Tesmer, J. R.

J. R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Material Analysis, (Material Research Society, 1995).

Torkamany, M. J.

A. Chehreghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: Saturable and reverse saturable absorption,” Laser Phys. 24, 015901 (2014).
[Crossref]

Torres-Torres, C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

Trejo-Luna, R.

Tugushev, R. I.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[Crossref]

Usmanov, T.

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[Crossref]

Van Stryland, E. W.

Van-Stryland, E. W.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

Vázquez, G. V.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
[Crossref] [PubMed]

Verbiest, T.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[Crossref]

Wang, J. C.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Wang, K. M.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Wang, L.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Wang, Q.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Wang, X. L.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Wang, Y.

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Webster, S.

Wei, T.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

White, C.

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Williams, E. K.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Wouters, J.

Yang, L.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Yu, K. W.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Zandbergen, H. W.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Zhang, X.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Zhu, D.

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Zuhr, R.

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Zykov, G. A.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Appl. Opt. (1)

Appl. Phys. B (1)

R. A. Ganeev, R. I. Tugushev, and T. Usmanov, “Application of the nonlinear optical properties of platinum nanoparticles for mode locking of Nd:glass laser,” Appl. Phys. B 94, 647–651 (2009).
[Crossref]

Appl. Phys. Lett. (2)

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron.,  26(4), 760–769 (1990).
[Crossref]

I. P. Nikolakakos, A. Major, J. S. Aitchison, and E. W. Smith, “Broadband characterization of the nonlinear optical properties of common reference materials,” IEEE J. Quantum Electron. 10(5), 1164–1170 (2004).
[Crossref]

J. Appl. Phys. (1)

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117, 113101 (2015).
[Crossref]

J. Lumin. (1)

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media a review of recent works,” J. Lumin. 169, 492–496 (2016).
[Crossref]

J. Opt. (1)

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt. 4(12), 125203 (2012)
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. 20, 1227–1232 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

A. Chehreghani and M. J. Torkamany, “Nonlinear optical properties of laser synthesized Pt nanoparticles: Saturable and reverse saturable absorption,” Laser Phys. 24, 015901 (2014).
[Crossref]

Nucl. Instr. Meth. Phys. Res. B (2)

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

R. J. Haglund, L. Yang, R. I. Magruder, C. White, R. Zuhr, L. Yang, R. Dorsinville, and R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instr. Meth. Phys. Res. B 91, 493–504 (1994).
[Crossref]

Opt. Commun. (4)

G. Fan, S. Ren, S. Qu, Z. Guo, Q. Wang, Y. Wang, and R. Gao, “Mechanisms for fabrications and nonlinear optical properties of Pd and Pt nanoparticles by femtosecond laser,” Opt. Commun. 295, 219–225 (2013).
[Crossref]

S. Qu, Y. Song, H. Liu, Y. Wang, Y. Gao, S. Liu, X. Zhang, Y. Li, and D. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283–288 (2002).
[Crossref]

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429–433 (2005).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909– 1912 (2009).
[Crossref]

Opt. Express (7)

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 25, 7659–7666 (2015).
[Crossref]

S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).
[Crossref] [PubMed]

T. J. Antosiewicz and S. P. Apell, “Plasmonic glasses: Optical properties of amorphous metal-dielectric composites,” Opt. Express 22, 2013–2042 (2014).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref] [PubMed]

J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodriguez-Fernandez, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express,  17(15), 12849–12868 (2009).
[Crossref] [PubMed]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
[Crossref] [PubMed]

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express,  13(20), 7976–7981, (2005).
[Crossref] [PubMed]

Opt. Mater. (1)

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krnig relations in nonlinear optics,” Opt. Quantum Electron. 24(1), 1–30 (1992)
[Crossref]

Phys. Rep. (1)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).
[Crossref]

Phys. Rev. A (2)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

Phys. Rev. B (1)

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Proc. SPIE (1)

G. I. Stegeman, “All-optical devices: materials tequirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Rev. Adv. Mater. Sci. (2)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

A. L. Stepanov and I. B. Khaibullin, “Fabrication of metal nanoparticles in sapphire by low-energy ion implantation,” Rev. Adv. Mater. Sci. 9, 109–129 (2005).

Topics Appl. Physics (1)

A. Meldrum, R. Lopez, R. Magruder, L. Boatner, and C. White, “Structure and properties of nanoparticles formed by ion implantation,” Topics Appl. Physics 116, 255–285 (2010).
[Crossref]

Other (5)

J. R. Tesmer and M. Nastasi, Handbook of Modern Ion Beam Material Analysis, (Material Research Society, 1995).

D. E. Gray, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, Inc., 1972).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
[Crossref]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[Crossref]

S. A. Meier, Plasmonics Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Rutherford Backscattering Spectrum of the sample as implanted. The Pt depth profile is fitted to a Gaussian with a maximum at 330 nm and a FWHM of 190 nm. The ion fluence was 2.8 × 1016 ions/cm2.
Fig. 2
Fig. 2 Absorbance spectra of samples A, B and C. The presence of the LSPR for samples A and B indicates the formation of NPs, while its absorbance in C shows that no NPs are present. The dashed black points are the theoretical absorbance spectra of spherical Platinum nanoparticles in Sapphire.
Fig. 3
Fig. 3 Shows transversal SEM images of a sample implanted with Pt ions and annealed for 60 min in a reducing atmosphere. The images were formed capturing the backscaterred electrons, in order to appreciate the difference in atomic number between the matrix and the Pt nanoparticles. Both images were taken in different resolution scale a) in 100 nm and b) in 50 nm, respectively.
Fig. 4
Fig. 4 X-Ray diffraction spectrum of sample A containing Pt nanoparticles in sapphire and compared with the theoretical FCC simulation.
Fig. 5
Fig. 5 Dual-arm z-scan setup used. The detector D1 monitors the input laser power, while the detectors D2 and D4 monitor the closed aperture z-scan signal and fluctuations due to changes in the incident laser spatial profile, respectively. The detectors D3 and D5 monitor the open-aperture z-scan signal from the sample and for energy fluctuations in the profile of the reference beam, respectively.
Fig. 6
Fig. 6 Open-aperture z-scan results for the samples containing near spherical platinum nanoparticles (A and B) and ion-platinum nanoparticles (C). For this experiments, the irradiance used was I0 = 5.3 × 1010 W/cm2
Fig. 7
Fig. 7 Closed-aperture z-scan results for the samples A, B and C. For these experiments, the irradiance used was I0 = 5.3 × 1010 W/cm2
Fig. 8
Fig. 8 Open (a) and closed-aperture (b) z-scan results for the sapphire matrix using a irradiance I0 = 47.3 × 1010 W/cm2

Tables (1)

Tables Icon

Table 1 Nonlinear optical properties n2 and β, and figures of merit W and T, evaluated under the irradiances showed for samples A, B and C and n2 for sapphire matrix for two irradiances.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 0 = p 18 π n d 3 λ ε m ( ε m + 2 ε d ) 2 + ε m 2 ,
χ eff ( 3 ) = χ h ( 3 ) + p [ 3 ε d ε m + i ε m + 2 ε d ] 4 χ m ( 3 ) χ h ( 3 ) + p f 1 2 | f 1 | 2 χ m ( 3 ) ,
W = Δ n max λ α 0 ,
T = β λ n 2 ,

Metrics