Abstract

In radio-over-fiber systems, optical single-sideband (SSB) modulation signals are preferred to optical double-sideband (DSB) modulation signals for fiber distribution in order to mitigate the microwave power fading effect. However, typically adopted modulation schemes generate DSB signals, making DSB-to-SSB conversion necessary before or after fiber distribution. This study investigates a semiconductor laser at stable locking dynamics for such conversion. The conversion relies solely on the nonlinear dynamical interaction between an input DSB signal and the laser. Only a typical semiconductor laser is therefore required as the key conversion unit, and no pump or probe signal is necessary. The conversion can be achieved for a broad tunable range of microwave frequency up to at least 60 GHz. In addition, the conversion can be carried out even when the microwave frequency, the power of the input DSB signal, or the frequency of the input DSB signal fluctuates over a wide range, leading to high adaptability and stability of the conversion system. After conversion, while the microwave phase quality, such as linewidth and phase noise, is mainly preserved, a bit-error ratio down to 10−9 is achieved for a data rate up to at least 8 Gb/s with a detection sensitivity improvement of more than 1.5 dB.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser

Sze-Chun Chan, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 15(22) 14921-14935 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28, 390–405 (2010).
  2. C. Liu, J. Wang, L. Cheng, M. Zhu, and G. K. Chang, “Key microwave-photonics technologies for next-generation cloud-based radio access networks,” J. Lightwave Technol. 32, 3452–3460 (2014).
  3. J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
    [Crossref]
  4. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).
  5. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
    [Crossref]
  6. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).
  7. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
    [Crossref]
  8. A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier-suppression technique with a Brillouin-erbium fiber laser,” Opt. Lett. 25, 197–199 (2000).
  9. A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
    [Crossref]
  10. Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
    [Crossref]
  11. S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
    [Crossref]
  12. W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
    [Crossref]
  13. Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
  14. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
  15. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [Crossref]
  16. V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
    [Crossref]
  17. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
    [Crossref]
  18. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
    [Crossref]
  19. S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
    [Crossref]
  20. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
  21. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
    [Crossref]
  22. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
  23. S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
  24. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
    [Crossref]
  25. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
    [Crossref]
  26. Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
    [Crossref]
  27. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
    [Crossref]
  28. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. J. Chang-Hasnain, and M. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16, 6609–6618 (2008).
    [Crossref] [PubMed]
  29. K. L. Hsieh, Y. H. Hung, and S. K. Hwang, “Optical DSB-to-SSB conversion for radio-over-fiber links utilizing semiconductor lasers at stable locking dynamics,” in Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 132–134.
  30. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
    [Crossref]
  31. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “On the performance of hybrid RF and RF/FSO dual-hop transmission systems,” in Proceedings of 2013 2nd International Workshop on Optical Wireless Communicaitons (IEEE, 2013), pp. 45–49.
  32. K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - part II,” IEEE J. Quantum Electron. 19, 1102–1109 (1983).
    [Crossref]
  33. M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
    [Crossref]
  34. R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE and Waves and Electrons 34, 351–357 (1946).
  35. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron.  36, 293–341 (2012).
    [Crossref]

2014 (1)

2013 (3)

2012 (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron.  36, 293–341 (2012).
[Crossref]

2011 (2)

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

2010 (2)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28, 390–405 (2010).

2008 (1)

2007 (1)

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[Crossref]

2006 (1)

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[Crossref]

2005 (2)

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

2004 (3)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[Crossref]

2003 (2)

Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
[Crossref]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

2000 (2)

A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier-suppression technique with a Brillouin-erbium fiber laser,” Opt. Lett. 25, 197–199 (2000).

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[Crossref]

1998 (2)

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[Crossref]

1997 (3)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[Crossref]

1996 (2)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[Crossref]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
[Crossref]

1995 (1)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

1992 (1)

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).

1983 (1)

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - part II,” IEEE J. Quantum Electron. 19, 1102–1109 (1983).
[Crossref]

1946 (1)

R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE and Waves and Electrons 34, 351–357 (1946).

Adler, R.

R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE and Waves and Electrons 34, 351–357 (1946).

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

Aldaya, I.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

Alouini, M.-S.

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “On the performance of hybrid RF and RF/FSO dual-hop transmission systems,” in Proceedings of 2013 2nd International Workshop on Optical Wireless Communicaitons (IEEE, 2013), pp. 45–49.

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[Crossref]

AnnovazziLodi, V.

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

Ansari, I. S.

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “On the performance of hybrid RF and RF/FSO dual-hop transmission systems,” in Proceedings of 2013 2nd International Workshop on Optical Wireless Communicaitons (IEEE, 2013), pp. 45–49.

Aragon-Zavala, A.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Bakaul, M.

Barry, L.P.

A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[Crossref]

Beas, J.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

Benito, D.

Blais, S. R.

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[Crossref]

Campuzano, G.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

Castanon, G.

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

Chan, S. C.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).

Chang, G. K.

Chang-Hasnain, C. J.

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Cheng, L.

Chu, C. H.

Donati, S.

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron.  36, 293–341 (2012).
[Crossref]

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

Gamage, P.

Garde, M. J.

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Hamel, W. A.

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

Hsieh, K. L.

K. L. Hsieh, Y. H. Hung, and S. K. Hwang, “Optical DSB-to-SSB conversion for radio-over-fiber links utilizing semiconductor lasers at stable locking dynamics,” in Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 132–134.

Hsieh, S. C.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Hung, Y. H.

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).

K. L. Hsieh, Y. H. Hung, and S. K. Hwang, “Optical DSB-to-SSB conversion for radio-over-fiber links utilizing semiconductor lasers at stable locking dynamics,” in Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 132–134.

Hwang, S. K.

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron.  36, 293–341 (2012).
[Crossref]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[Crossref]

K. L. Hsieh, Y. H. Hung, and S. K. Hwang, “Optical DSB-to-SSB conversion for radio-over-fiber links utilizing semiconductor lasers at stable locking dynamics,” in Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 132–134.

Hwang, S.K.

Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
[Crossref]

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[Crossref]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

Lau, E. K.

Lee, K. L.

Lenstra, D.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

Li, C. Y.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

Li, J.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[Crossref]

Li, W.

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

Lim, C.

Liu, C.

Liu, J. M.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Liu, J. Q.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[Crossref]

Liu, J.M.

Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
[Crossref]

Loayssa, A.

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Nirmalathas, A.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Novak, D.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28, 390–405 (2010).

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

Okajima, Y.

Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
[Crossref]

Parekh, D.

Qi, X. Q.

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

Scire, A.

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

Simpson, T.B.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

Sorel, M.

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

Sung, H. K.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Taylor, D. P.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[Crossref]

Vahala, K.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - part II,” IEEE J. Quantum Electron. 19, 1102–1109 (1983).
[Crossref]

van Exter, M. T.

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

Wang, J.

Wang, L. X.

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

Waterhouse, R.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

Woerdman, J. P.

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

Wu, M.

Xie, L.

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

Yang, Y.

Yao, J.

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[Crossref]

Yao, X. S.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[Crossref]

Yariv, A.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - part II,” IEEE J. Quantum Electron. 19, 1102–1109 (1983).
[Crossref]

Yilmaz, F.

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “On the performance of hybrid RF and RF/FSO dual-hop transmission systems,” in Proceedings of 2013 2nd International Workshop on Optical Wireless Communicaitons (IEEE, 2013), pp. 45–49.

Zeijlmans, B. R. P.

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

Zhao, X.

Zhu, M.

Zhu, N. H.

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

IEEE Commun. Surveys Tuts. (1)

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Commun. Surveys Tuts. 15, 1593–1619 (2013).
[Crossref]

IEEE J. of Quantum Electron. (1)

V. AnnovazziLodi, A. Scire, M. Sorel, and S. Donati, “Dynamical Behavior and Locking of Semiconductor Laser Subjected to Injection”, IEEE J. of Quantum Electron. 34, 2350–2356 (1998).
[Crossref]

IEEE J. Quantum Electron. (6)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron. 32, 1456–1468 (1996).
[Crossref]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - part II,” IEEE J. Quantum Electron. 19, 1102–1109 (1983).
[Crossref]

M. T. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signatures of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (7)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[Crossref]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[Crossref]

A. Kaszubowska, P. Anandarajah, and L.P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photon. Technol. Lett. 16, 605–607 (2004).
[Crossref]

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 1277–1279 (2005).
[Crossref]

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230–2232 (2006).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μ m semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[Crossref]

IEEE Trans. Commun. (1)

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li, N. H. Zhu, L. X. Wang, X. Q. Qi, and L. Xie, “Tunable carrier generation and broadband data conversion for RoF system based on stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 59, 2350–2356 (2011).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

J. Lightwave Technol. (2)

Microwave Theory Tech. (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans,”. Microwave Theory Tech. 44, 1716–1724 (1996).
[Crossref]

Opt. Commun. (3)

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000).
[Crossref]

Y. Okajima, S.K. Hwang, and J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt. Commun. 219, 357–364 (2003).
[Crossref]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).

Opt. Express (1)

Opt. Lett. (3)

Physics Reports (1)

S. Wieczorek, B. Krauskopf, T.B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Physics Reports 416, 1–128 (2005).
[Crossref]

Proc. IRE and Waves and Electrons (1)

R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE and Waves and Electrons 34, 351–357 (1946).

Progress in Quantum Electron (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron.  36, 293–341 (2012).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Other (2)

I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “On the performance of hybrid RF and RF/FSO dual-hop transmission systems,” in Proceedings of 2013 2nd International Workshop on Optical Wireless Communicaitons (IEEE, 2013), pp. 45–49.

K. L. Hsieh, Y. H. Hung, and S. K. Hwang, “Optical DSB-to-SSB conversion for radio-over-fiber links utilizing semiconductor lasers at stable locking dynamics,” in Proceedings of 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 132–134.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental apparatus. LD1, laser diode 1; PC, polarization controller; MZM, Mach-Zehnder modulator; M, mixer; PG, pattern generator; EDFA, Erbium-doped fiber amplifier; VOA, variable optical attenuator; C, circulator; LD2, laser diode 2; OSA, optical spectrum analyzer; PD, photodiode; MSA, microwave spectrum analyzer; PS, phase shifter; LPF, low-pass filter; ET, error tester.

Fig. 2
Fig. 2

Optical spectra of (a) free-running output (black curve), CW input (blue curve), and stable locking output (green curve), and (b) DSB input (blue curve) and SSB output (red curve). For visibility, the curves are up- or down-shifted with respect to each other. The x-axes are relative to the free-running frequency of LD2. Inputs are kept at (ξi, fi) = (1.33, 15.53 GHz).

Fig. 3
Fig. 3

(a) Optical spectra of the stable locking output (green curve) at (ξi, fi) = (1.17, 15.53 GHz) and the SSB output (red curve) at (ξi, fi, fm) = (1.17, 15.53 GHz, 27 GHz). (b) Optical Spectra of the stable locking output (green curve) at (ξi, fi) = (1.33, 21.8 GHz) and the SSB output (red curve) at (ξi, fi, fm) = (1.33, 21.8 GHz, 33 GHz). (c) Relaxation resonance frequency fr and (d) sideband rejection ratio, SRR, of the stable locking output in terms of ξi at fi = 15.53 GHz and in terms of fi at ξi = 1.33. In (a) and (b), the curves are up- or down-shifted with respect to each other for visibility, and the x-axes are relative to the free-running frequency of LD2.

Fig. 4
Fig. 4

(a) Tunability in microwave subcarrier frequency for two representative SRR values. (b) Tunability in SRR for two representative microwave subcarrier frequencies.

Fig. 5
Fig. 5

Optical spectra of DSB inputs (blue curves) and SSB outputs (red curves) at (ξi, fi) = (1.33, 15.53 GHz) for (a) fm = 25 GHz and (b) fm = 20 GHz, respectively. For visibility, the curves are up- or down-shifted with respect to each other. The x-axes are relative to the free-running frequency of LD2. (c) Sideband rejection ratio and (d) optical power of the lower (squares) and upper (circles) modulation sidebands in terms of fm at (ξi, fi) = (1.33, 15.53 GHz).

Fig. 6
Fig. 6

Optical spectra of DSB inputs (blue curves) and SSB outputs (red curves) at fm = 30 GHz for (a) (ξi, fi) = (1.17, 15.53 GHz) and (b) (ξi, fi) = (1.33, 21.8 GHz), respectively. For visibility, the curves are up- or down-shifted with respect to each other. The x-axes are relative to the free-running frequency of LD2.

Fig. 7
Fig. 7

(a) Microwave spectra, centering at 30 GHz, and (b) phase noise of the DSB input (blue curves) and the SSB output (red curves) at (ξi, fi, fm) = (1.33, 15.53 GHz, 30 GHz). (c) Microwave Spectra, centering at 25 GHz, and (d) phase noise of the DSB input (blue curves) and the SSB output (red curves) at (ξi, fi, fm) = (1.33, 15.53 GHz, 25 GHz). When measuring the microwave linewidth, the highest resolution of 1 Hz is used.

Fig. 8
Fig. 8

(a) BER in terms of received optical power. Open and solid squares are results for the DSB input and the SSB output, respectively, at (ξi, fi, fm) = (1.33, 15.53 GHz, 30 GHz). Open and solid circles are results for the DSB input and the SSB output, respectively, at (ξi, fi, fm) = (1.33, 15.53 GHz, 25 GHz). All bit rates are fixed at 1.25 Gb/s with a bit sequence of 231 −1. (b) Eye diagrams for the open and solid squares in (a), respectively, at BER = 10−9. (c) Frequency response of the proposed system to modulation of the microwave subcarrier at (ξi, fi, fm) = (1.33, 15.53 GHz, 30 GHz). (d) Detection sensitivity improvement at BER = 10−9 in terms of data rate with a bit sequence of 29 −1 when (ξi, fi, fm) = (1.33, 15.53 GHz, 30 GHz).

Fig. 9
Fig. 9

(a) Microwave power and (b) received optical power as functions of fiber transmission distance for the input DSB signal (blue symbols and curves) and the output SSB signal (red symbols and curves) at (ξi, fi, fm) = (1.33, 15.53 GHz, 30 GHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P m { 1 + S + 2 S cos [ 2 π c D l ( f m f c ) 2 ] }

Metrics