Abstract

We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber’s index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel laser machining of optical fibers for long cavities with low birefringence

Hiroki Takahashi, Jack Morphew, Fedja Oručević, Atsushi Noguchi, Ezra Kassa, and Matthias Keller
Opt. Express 22(25) 31317-31328 (2014)

Topographic control of open-access microcavities at the nanometer scale

Aurélien A. P. Trichet, Philip R. Dolan, David M. Coles, Gareth M. Hughes, and Jason M. Smith
Opt. Express 23(13) 17205-17216 (2015)

Design and characterization of an integrated surface ion trap and micromirror optical cavity

Andre Van Rynbach, George Schwartz, Robert F. Spivey, James Joseph, Geert Vrijsen, and Jungsang Kim
Appl. Opt. 56(23) 6511-6519 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
    [Crossref] [PubMed]
  2. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  3. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
    [Crossref]
  4. M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
    [Crossref] [PubMed]
  5. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref] [PubMed]
  6. M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
    [Crossref]
  7. B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
    [Crossref]
  8. N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
    [Crossref]
  9. B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
    [Crossref]
  10. M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
    [Crossref]
  11. B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
    [Crossref]
  12. H. Takahashi, J. Morphew, F. Oručević, A. Noguchi, E. Kassa, and M. Keller, “Novel laser machining of optical fibers for long cavities with low birefringence,” Opt. Express 22, 31317 (2014).
    [Crossref]
  13. R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
    [Crossref]
  14. I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
    [Crossref] [PubMed]
  15. O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
    [Crossref] [PubMed]
  16. C. M. Miller and F. J. Janniello, “Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network,” Electron. Lett. 26, 2122 (1990).
    [Crossref]
  17. See for example www.micronoptics.com .
  18. J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
    [Crossref]
  19. M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
    [Crossref]
  20. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
    [Crossref]
  21. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  22. W. B. Joyce and B. DeLoach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187–4196 (1984).
    [Crossref] [PubMed]
  23. In principle, this problem can be overcome by the use of time-reversal techniques to achieve the desired mode at the output of the multimode fiber. However, a suitable scheme to obtain an error signal remains to be found.
  24. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260 (2013).
    [Crossref] [PubMed]
  25. Newport GTS150 and GTS30V, Attocube ECS5050NUM.
  26. Nikon CF IC EPI Plan DI 20×.
  27. J. Schmit and J. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610 (1995).
    [Crossref] [PubMed]
  28. Nyfors Autocleaver.
  29. Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783 (2014).
    [Crossref] [PubMed]
  30. Laseroptik GmbH, Garbsen, Germany.
  31. J. Degallaix, “OSCAR, a Matlab-based optical FFT code,” J. Phys.: Conf. Ser. 228, 012021 (2010).
  32. A. Roy and M. D. Barrett, “Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments,” Appl. Phys. Lett. 99, 171112 (2011).
    [Crossref]

2016 (1)

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

2015 (5)

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

2014 (3)

2013 (5)

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260 (2013).
[Crossref] [PubMed]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

2012 (2)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

2011 (1)

A. Roy and M. D. Barrett, “Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments,” Appl. Phys. Lett. 99, 171112 (2011).
[Crossref]

2010 (4)

J. Degallaix, “OSCAR, a Matlab-based optical FFT code,” J. Phys.: Conf. Ser. 228, 012021 (2010).

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
[Crossref] [PubMed]

2007 (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

1997 (1)

1995 (1)

1990 (1)

C. M. Miller and F. J. Janniello, “Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network,” Electron. Lett. 26, 2122 (1990).
[Crossref]

1984 (1)

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Barbour, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

Barrett, M. D.

A. Roy and M. D. Barrett, “Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments,” Appl. Phys. Lett. 99, 171112 (2011).
[Crossref]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Benedikter, J.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

Besga, B.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Birks, T. A.

Blatt, R.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Brandstätter, B.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Brekenfeld, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Casabone, B.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Colombe, Y.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783 (2014).
[Crossref] [PubMed]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Creath, J.

Degallaix, J.

J. Degallaix, “OSCAR, a Matlab-based optical FFT code,” J. Phys.: Conf. Ser. 228, 012021 (2010).

Delley, Y.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

DeLoach, B.

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Djeu, N.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Dugrain, V.

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

Engelsen, N. J.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

Estève, J.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Farahi, S.

Flowers-Jacobs, N. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Friebe, K.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Götzinger, S.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Hänsch, T. W.

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Harris, J. G. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Hoch, S. W.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Hosten, O.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

Hümmer, T.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

Hunger, D.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Imamoglu, A.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Janniello, F. J.

C. M. Miller and F. J. Janniello, “Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network,” Electron. Lett. 26, 2122 (1990).
[Crossref]

Jayich, A. M.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Joyce, W. B.

Kasevich, M. A.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

Kashkanova, A.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Kassa, E.

Keller, M.

Knight, J. C.

Köhl, M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Krishnakumar, R.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

Leibfried, D.

Leroux, I. D.

I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
[Crossref] [PubMed]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Mader, M.

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

Maineult, V.

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

McClung, A.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Meyer, H. M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Miguel-Sánchez, J.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

Miguel-Sánchez, M.

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Miller, C. M.

C. M. Miller and F. J. Janniello, “Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network,” Electron. Lett. 26, 2122 (1990).
[Crossref]

Morphew, J.

Moser, C.

Muller, A.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Noguchi, A.

Northup, T. E.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Orucevic, F.

Papadopoulos, I. N.

Petrak, B.

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Psaltis, D.

Reichel, J.

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Reinhard, A.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Rempe, G.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Renn, A.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Ritter, S.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Rosenbusch, P.

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

Roy, A.

A. Roy and M. D. Barrett, “Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments,” Appl. Phys. Lett. 99, 171112 (2011).
[Crossref]

Russell, P. S. J.

Sandoghdar, V.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Sankey, J. C.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Schlederer, B.

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

Schleier-Smith, M. H.

I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
[Crossref] [PubMed]

Schmidt, P. O.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Schmit, J.

Schuppert, K.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Slichter, D. H.

Steiner, M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Stöferle, T.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Stute, A.

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Szmuk, R.

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

Takahashi, H.

Togan, E.

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Toninelli, C.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Uphoff, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Vaneph, C.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

Volz, T.

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Vuletic, V.

I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
[Crossref] [PubMed]

Warburton, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

Wilson, A. C.

Wineland, D. J.

AIP Adv. (1)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Roy and M. D. Barrett, “Fabrication of glass micro-cavities for cavity quantum electrodynamics experiments,” Appl. Phys. Lett. 99, 171112 (2011).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in-situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

C. M. Miller and F. J. Janniello, “Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network,” Electron. Lett. 26, 2122 (1990).
[Crossref]

J. Phys.: Conf. Ser. (1)

J. Degallaix, “OSCAR, a Matlab-based optical FFT code,” J. Phys.: Conf. Ser. 228, 012021 (2010).

Nature (2)

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529, 505 (2016).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Nature Comm. (1)

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nature Comm. 6, 7249 (2015).
[Crossref]

New J. Phys. (4)

J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, “Transverse-mode coupling and diffraction loss in tunable Fabry-Pérot microcavities,” New J. Phys. 17, 053051 (2015).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

M. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

R. Szmuk, V. Dugrain, V. Maineult, J. Reichel, and P. Rosenbusch, “Stability of a trapped-atom clock on a chip,” Phys. Rev. A 92, 012106 (2015).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89, 023811 (2014).
[Crossref]

Phys. Rev. Appl. (1)

B. Besga, C. Vaneph, J. Reichel, J. Estève, A. Reinhard, J. Miguel-Sánchez, A. Imamoğlu, and T. Volz, “Polariton boxes in a tunable fiber cavity,” Phys. Rev. Appl. 3, 014008 (2015).
[Crossref]

Phys. Rev. Lett. (3)

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, “Orientation-dependent entanglement lifetime in a squeezed atomic clock,” Phys. Rev. Lett. 104, 250801 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

B. Brandstätter, A. McClung, K. Schuppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Other (6)

See for example www.micronoptics.com .

In principle, this problem can be overcome by the use of time-reversal techniques to achieve the desired mode at the output of the multimode fiber. However, a suitable scheme to obtain an error signal remains to be found.

Newport GTS150 and GTS30V, Attocube ECS5050NUM.

Nikon CF IC EPI Plan DI 20×.

Nyfors Autocleaver.

Laseroptik GmbH, Garbsen, Germany.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Power coupling between the incoupling fiber mode and the mode of a symmetric cavity for different values of α (the cavity length normalized to the Rayleigh range of the cavity mode). The red dashed lines indicate the increased power coupling expected from the use of a PC fiber (wf = 8.2 μm) with respect to a standard SM fiber (wf = 3 μm) for an example cavity with w0 = 14.1 μm and L = 1.2mm. The blue shaded area shows the stability region of the symmetric cavity. (b) Maximum achievable power coupling for a given α.

Fig. 2
Fig. 2

CO2 dot milling setup: Precision translation stages are used to control the CO2 beam position on the fiber and to translate the fiber to the optical profiler position for surface characterization. Light coupled into the fiber core allows a precise centering of the mirror profile. The CO2 focusing lens (FL) is a f = 25mm asphere illuminated with a beam diameter of 7 mm.

Fig. 3
Fig. 3

(a) Profilometer image of the surface of a PC fiber (NKT LMA 20) cleaved in the non-collapsed region, indicated by the arrow. (b) Side view of a PC fiber, showing the transition between the non-collapsed and collapsed regions. (c) Profilometer image of the surface for a cleave in the collapsed region. (The red crosshairs in (a) and (c) mark the center of the fiber.)

Fig. 4
Fig. 4

Large spherical surface machined on a 200 μm diameter SM fiber. (a) Interferogram of the surface after processing. The red circle shows the initial fiber diameter, the green circle shows the area over which the structure was optimized. The crosshairs indicate the center of the fiber. The red dots indicate the positions of the CO2 pulses (b) Surface profile measured by phase-shifting interferometry. (The grey area was added to indicate the fiber orientation.)

Fig. 5
Fig. 5

(a) Cut along the x axis of a spherical profile on a 220 μm diameter MM fiber and corresponding cut of a two-dimensional spherical fit (R = 1475 μm) on a circular region with a diameter of 100 μm. (The shaded area in (a) and (b) indicates the fit region.) (b) Cut along the x axis of the fit residuals. (c) 2D fit residuals.

Fig. 6
Fig. 6

Influence of the doped core region. Shown are the residuals of a 2D spherical fit for machined SM and PC fiber surfaces. The milling patterns are very similar for both fibers and are close to the one shown in Fig. 4(a). 73 pulses were used for the SM fiber and 70 for the PC fiber; the pulse length is τ = 17.6ms for the SM fiber and τ = 20ms for the PC fiber. The data is the average of 120 profile measurements for each fiber (see Sec. 5.3). The radius of the fit region was chosen to be 18 μm because this is the mode radius on the fiber for a cavity of length L = 1200 μm and a ROC R = 1650 μm. The fit for the PC fiber gives R = 1492μm and the residual shows only a slow modulation, which could probably be further reduced by fine-tuning the pulse length of the last, central pulse. By contrast, the residual of the standard SM fiber (fitted R = 1508μm) shows a strong variation at the fiber center at the interface between core an cladding material.

Fig. 7
Fig. 7

(a) Microscope image of a fiber Fabry-Perot cavity with a PC fiber (left) and a MM fiber (right). The fibers were illuminated from the back to obtain a high contrast for cavity length measurement. The collapsed region of the PC fiber is visible. (b) Experimental results (filled symbols) and simulations (empty symbols with dotted lines, see 5.3) for the finesse as a function of length. Results are shown for an SM-MM cavity (red triangles) with R1 = 1508 ± 65 μm and R2 = 1629 ± 73 μm and for a PC-MM cavity (blue circles) with R1 = 1492 ± 110 μm and R2 as before. (The MM fiber is the same in both cavities.) The blue solid line shows the result of the analytical clipping loss formula (6) fitted to the PC-MM data. The fit parameters are given in Table 2. (c) Transmission of the cavities. The PC fiber improves transmission by more than an order of magnitude for L > 1mm. The lines show the calculated transmission using Eq. (7) and the mode field radius wf given in the legend. wf = 6.1 μm is the mode field radius measured independently for the PC fiber (see Sec. 5.4). The blue dashed line for wf = 4.5 μm fits the PC data well, but the large deviation from the nominal value of the PC mode field radius remains unexplained. The sharp drop in finesse and transmission around L = 1650 μm corresponds to the unstable region R1 < L < R2 of the slightly asymmetric cavity.

Tables (2)

Tables Icon

Table 1 Fiber Types Used in the Experiments

Tables Icon

Table 2 Mirror Diameters and ROCs Deduced from the Finesse Data (see Fig. 7(b))

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

w m , min = λ π L and w c = λ 2 π L .
ε 4 ( w f w c + w c w f ) 2 + ( λ π w f w c ) 2 s 2 ,
α L 2 z R = 1 2 R L 1 ,
ε = 4 ( w f w c + w c w f ) 2 + ( w c w f ) 2 α 2 ,
= 2 π A + S + C + 𝒯
cl ( w i , D i ) = exp ( 2 ( D i / 2 ) 2 / w i 2 ) .
T c = ε 𝒯 2 ( 𝒯 + ) 2 ,

Metrics