Abstract

In underwater imaging scenarios, the scattering media could cause severe image degradation due to the backscatter veiling as well as signal attenuation. In this paper, we consider the polarization effect of the object, and propose a method of retrieving the objects radiance based on estimating the polarized-difference image of the target signal. We show with a real-world experiment that by taking into account the polarized-difference image of the target signal additionally, the quality of the underwater image can be effectively enhanced, which is particularly effective in the cases where both the object radiance and the backscatter contribute to the polarization, such as underwater detection of the artifact objects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image dehazing using polarization effects of objects and airlight

Shuai Fang, XiuShan Xia, Xing Huo, and ChangWen Chen
Opt. Express 22(16) 19523-19537 (2014)

Active underwater descattering and image recovery

Pingli Han, Fei Liu, Kui Yang, Jinyu Ma, Jianjun Li, and Xiaopeng Shao
Appl. Opt. 56(23) 6631-6638 (2017)

Exploring underwater target detection by imaging polarimetry and correlation techniques

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu
Appl. Opt. 52(5) 997-1005 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).
  2. G. N. Bailey and N. C. Flemming, “Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology,” Quat. Sci. Rev. 27(23-24), 2153–2165 (2008).
    [Crossref]
  3. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15(2), 81–93 (1997).
    [Crossref]
  4. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
    [Crossref] [PubMed]
  5. E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 511–519 (2006).
    [Crossref]
  6. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
    [Crossref]
  7. J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
    [Crossref] [PubMed]
  8. J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
    [Crossref]
  9. N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, “Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism,” Opt. Lett. 40(23), 5634–5637 (2015).
    [Crossref] [PubMed]
  10. J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, 1995).
  11. J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,” IEEE J. Oceanic Eng. 15(2), 101–111 (1990).
    [Crossref]
  12. S. Sabbah and N. Shashar, “Light polarization under water near sunrise,” J. Opt. Soc. Am. A 24(7), 2049–2056 (2007).
    [Crossref] [PubMed]
  13. J. Cariou, B. L. Jeune, J. Lotrian, and Y. Guern, “Polarization effects of seawater and underwater targets,” Appl. Opt. 29(11), 1689–1695 (1990).
    [Crossref] [PubMed]
  14. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
    [Crossref] [PubMed]
  15. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
    [Crossref] [PubMed]
  16. Y. Y. Schechner and Y. Averbuch, “Regularized image recovery in scattering media,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007).
    [Crossref] [PubMed]
  17. S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
    [Crossref] [PubMed]
  18. M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39(23), 6759–6762 (2014).
    [Crossref] [PubMed]
  19. B. Huang, T. Liu, J. Han, and H. Hu, “Polarimetric target detection under uneven illumination,” Opt. Express 23(18), 23603–23612 (2015).
    [Crossref] [PubMed]
  20. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
    [Crossref] [PubMed]
  21. A. P. Jacquemin and C. H. Berry, “Entropy measure of diversification and corporate growth,” J. Inst. Econ. 27(4), 359–369 (1979).
    [Crossref]
  22. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36(23), 4590–4592 (2011).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39(23), 6759–6762 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (2)

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref] [PubMed]

G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36(23), 4590–4592 (2011).
[Crossref] [PubMed]

2009 (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

2008 (1)

G. N. Bailey and N. C. Flemming, “Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology,” Quat. Sci. Rev. 27(23-24), 2153–2165 (2008).
[Crossref]

2007 (2)

S. Sabbah and N. Shashar, “Light polarization under water near sunrise,” J. Opt. Soc. Am. A 24(7), 2049–2056 (2007).
[Crossref] [PubMed]

Y. Y. Schechner and Y. Averbuch, “Regularized image recovery in scattering media,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007).
[Crossref] [PubMed]

2006 (1)

E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 511–519 (2006).
[Crossref]

2005 (2)

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

2001 (1)

S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
[Crossref] [PubMed]

1997 (1)

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15(2), 81–93 (1997).
[Crossref]

1990 (3)

1979 (1)

A. P. Jacquemin and C. H. Berry, “Entropy measure of diversification and corporate growth,” J. Inst. Econ. 27(4), 359–369 (1979).
[Crossref]

Agaian, S. S.

S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
[Crossref] [PubMed]

Agarwal, N.

Alfalou, A.

Anna, G.

Averbuch, Y.

Y. Y. Schechner and Y. Averbuch, “Regularized image recovery in scattering media,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007).
[Crossref] [PubMed]

Bailey, G. N.

G. N. Bailey and N. C. Flemming, “Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology,” Quat. Sci. Rev. 27(23-24), 2153–2165 (2008).
[Crossref]

Berry, C. H.

A. P. Jacquemin and C. H. Berry, “Entropy measure of diversification and corporate growth,” J. Inst. Econ. 27(4), 359–369 (1979).
[Crossref]

Boffety, M.

Brosseau, C.

Bykov, A.

Cariou, J.

Delrot, P.

Dogariu, A.

Dolfi, D.

Dubreuil, M.

Erlick, C.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

Flemming, N. C.

G. N. Bailey and N. C. Flemming, “Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology,” Quat. Sci. Rev. 27(23-24), 2153–2165 (2008).
[Crossref]

Garcia-Caurel, E.

Goudail, F.

Grigoryan, A. M.

S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
[Crossref] [PubMed]

Guern, Y.

Han, J.

He, K.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref] [PubMed]

Hu, H.

Huang, B.

Jacquemin, A. P.

A. P. Jacquemin and C. H. Berry, “Entropy measure of diversification and corporate growth,” J. Inst. Econ. 27(4), 359–369 (1979).
[Crossref]

Jaffe, J. S.

J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,” IEEE J. Oceanic Eng. 15(2), 101–111 (1990).
[Crossref]

Jeune, B. L.

Ju, H.

J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
[Crossref] [PubMed]

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

Karpel, N.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Leonard, I.

Lerner, A.

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

Liang, J.

J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
[Crossref] [PubMed]

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

Liu, T.

Lotrian, J.

Meglinski, I.

Novikova, T.

Olmos-Antillon, A. T.

E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 511–519 (2006).
[Crossref]

Ossikovski, R.

Panetta, K.

S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
[Crossref] [PubMed]

Peli, E.

Pierangelo, A.

Popov, A.

Qu, E.

J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
[Crossref] [PubMed]

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

Ren, L.

J. Liang, L. Ren, H. Ju, W. Zhang, and E. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Opt. Express 23(20), 26146–26157 (2015).
[Crossref] [PubMed]

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

Sabbah, S.

S. Sabbah and N. Shashar, “Light polarization under water near sunrise,” J. Opt. Soc. Am. A 24(7), 2049–2056 (2007).
[Crossref] [PubMed]

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

Y. Y. Schechner and Y. Averbuch, “Regularized image recovery in scattering media,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007).
[Crossref] [PubMed]

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Shashar, N.

S. Sabbah and N. Shashar, “Light polarization under water near sunrise,” J. Opt. Soc. Am. A 24(7), 2049–2056 (2007).
[Crossref] [PubMed]

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

Sun, J.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref] [PubMed]

Tang, X.

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref] [PubMed]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

Trucco, E.

E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 511–519 (2006).
[Crossref]

Vanel, J.-C.

Wang, Y.

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

Wolff, L. B.

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15(2), 81–93 (1997).
[Crossref]

Yoon, J.

Zhang, W.

Appl. Opt. (2)

IEEE J. Oceanic Eng. (3)

J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,” IEEE J. Oceanic Eng. 15(2), 101–111 (1990).
[Crossref]

E. Trucco and A. T. Olmos-Antillon, “Self-tuning underwater image restoration,” IEEE J. Oceanic Eng. 31(2), 511–519 (2006).
[Crossref]

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

IEEE Trans. Image Process. (1)

S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10(3), 367–382 (2001).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

Y. Y. Schechner and Y. Averbuch, “Regularized image recovery in scattering media,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007).
[Crossref] [PubMed]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref] [PubMed]

K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011).
[Crossref] [PubMed]

Image Vis. Comput. (1)

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15(2), 81–93 (1997).
[Crossref]

J. Appl. Phys. (1)

J. Liang, L. Ren, H. Ju, E. Qu, and Y. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” J. Appl. Phys. 116(17), 173107 (2014).
[Crossref]

J. Inst. Econ. (1)

A. P. Jacquemin and C. H. Berry, “Entropy measure of diversification and corporate growth,” J. Inst. Econ. 27(4), 359–369 (1979).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (3)

Quat. Sci. Rev. (1)

G. N. Bailey and N. C. Flemming, “Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology,” Quat. Sci. Rev. 27(23-24), 2153–2165 (2008).
[Crossref]

Recent Res. Dev. Exp. Theor. Biol (1)

S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Under water polarization vision—a physical examination,” Recent Res. Dev. Exp. Theor. Biol 1, 123–176 (2005).

Other (1)

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The triangle region defined by the inequalities in Eq. (20), which indicates the possible relation between ΔD and K.

Fig. 2
Fig. 2

Experimental setup for underwater imaging.

Fig. 3
Fig. 3

Intensity image of the scene.

Fig. 4
Fig. 4

(a) Co-linear image I || (x,y) . (b) Cross-linear image I (x,y) . The yellow square is the region belonging to the background, which is used to estimating the intensity of the backscatter at infinity and DOP of the backscatter.

Fig. 5
Fig. 5

The deduced (a) transmittance t(x,y) and the recovered (b) radiance of the objects L(x,y), assuming that the light emanating from objects in the scene is unpolarized.

Fig. 6
Fig. 6

The retrieved (a) transmittance t(x,y) and (b) radiance of the objects L(x,y) by our method discussed in Section 3.

Fig. 7
Fig. 7

Enlarged view of parts of the intensity image (Fig. 3), the co-linear image [Fig. 4(a)] and the recovered image [Fig. 6(b)], which correspond to the regions of plastic cube (a) or metal coin (b) respectively.

Fig. 8
Fig. 8

(a) Co-linear image. (b) Cross-linear image. (c) The intensity image of the scene. (d) The recovered image of the scene by our method.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

D( x,y )=L( x,y )t( x,y ) ,
t( x,y )= e β( x,y )ρ( x,y ) .
B( x,y )= A [ 1t( x,y ) ] ,
I( x,y )=D( x,y )+B( x,y ) .
L( x,y )= I( x,y ) A [ 1t( x,y ) ] t( x,y ) .
I || ( x,y )= D || ( x,y )+ B || ( x,y ) ,
I ( x,y )= D ( x,y )+ B ( x,y ) ,
I( x,y )= I || ( x,y )+ I ( x,y ) .
P scat ( x,y )= B || ( x,y ) B ( x,y ) B || ( x,y )+ B ( x,y ) .
B( x,y )= [ I || ( x,y ) I ( x,y ) ][ D || ( x,y ) D ( x,y ) ] P scat = ΔI( x,y )ΔD( x,y ) P scat ,
t( x,y )=1 ΔI( x,y )ΔD( x,y ) P scat A .
A ^ = A || + A ,
P ^ scat = A || A A || + A .
L( x,y )= ε P ^ scat A I( x,y ) A [ ΔI( x,y )ΔD( x,y ) ] ε P ^ scat A [ ΔI( x,y )ΔD( x,y ) ] ,
I || ( x,y )= D || ( x,y )+ A || [ 1t( x,y ) ] ,
I ( x,y )= D ( x,y )+ A [ 1t( x,y ) ] .
K( x,y )= I || ( x,y ) A || I ( x,y ) A = D || ( x,y ) A || D ( x,y ) A .
{ 0 D || ( x,y )1 0 D ( x,y )1 D ( x,y ) D || ( x,y ) .
ΔD( x,y )= A || K( x,y )+ D ( x,y )( A || A A ) = A K( x,y )+ D || ( x,y )( A || A A || ) .
{ ΔD( x,y )0 ( A A || ) A || A K( x,y )0 ΔD( x,y ) A || K( x,y ) 0<K( x,y ) 1 A || ΔD( x,y ) A K( x,y )+( A || A A || ) ( A A || ) A || A K( x,y ) 1 A || .
Δ D ^ ( x,y )=aexp[ bK( x,y ) ] ,
EME=| 1 k 1 k 2 l=1 k 2 k=1 k 1 20log i max; k, l ω ( x,y ) i min; k, l ω ( x,y )+q | ,

Metrics