Abstract

We propose and demonstrate a dynamic Brillouin optical fiber sensing based on the multi-slope assisted fast Brillouin optical time-domain analysis (F-BOTDA), which enables the measurement of a large strain with real-time data processing. The multi-slope assisted F-BOTDA is realized based on the double-slope demodulation and frequency-agile modulation, which significantly increases the measurement range compared with the single- or double- slope assisted F-BOTDA, while maintaining the advantage of fast data processing and being suitable for real-time on-line monitoring. A maximum strain variation up to 5000με is measured in a 32-m fiber with a spatial resolution of ~1m and a sampling rate of 1kHz. The frequency of the strain is 12.8Hz, which is limited by the rotation rate of the motor used to load the force on the fiber. Furthermore, the influence of the frequency difference between two adjacent probe tones on the measurement error is studied theoretically and experimentally for optimization. For a Brillouin gain spectrum with a 78-MHz width, the optimum frequency difference is ~40MHz. The measurement error of Brillouin frequency shift is less than 3MHz over the whole measurement range (241MHz).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements

Dengwang Zhou, Yongkang Dong, Benzhang Wang, Taofei Jiang, Dexin Ba, Pengbai Xu, Hongying Zhang, Zhiwei Lu, and Hui Li
Opt. Express 25(3) 1889-1902 (2017)

Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape

Guangyao Yang, Xinyu Fan, Bin Wang, and Zuyuan He
Opt. Express 26(25) 32599-32607 (2018)

Distributed vibration measurement based on a coherent multi-slope-assisted BOTDA with a large dynamic range

Hua Zheng, Danqi Feng, Jingdong Zhang, Tao Zhu, Yongzhong Bai, Dingrong Qu, Xianbin Huang, and Feng Qiu
Opt. Lett. 44(5) 1245-1248 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  2. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref] [PubMed]
  3. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  4. X. Bao and L. Chen, “High performance BOTDA for long range sensing,” Proc. SPIE 7982, 798206 (2011).
    [Crossref]
  5. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  6. J. Urricelqui, M. Sagues, and A. Loayssa, “Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors,” Opt. Express 22(15), 18195–18202 (2014).
    [Crossref] [PubMed]
  7. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 4(2), 179–181 (2002).
    [Crossref]
  8. K. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis and beat lock-in detection scheme,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC2.
  9. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  10. Y. London, Y. Antman, R. Cohen, N. Kimelfeld, N. Levanon, and A. Zadok, “High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding,” Opt. Express 22(22), 27144–27158 (2014).
    [Crossref] [PubMed]
  11. A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
    [Crossref]
  12. L. Thévenaz, A. Denisov, and M. A. Soto, “Brillouin distributed fiber sensing at ultra-high spatial resolution,” in Photonics Conference (IPC, 2015), pp. 337–338.
    [Crossref]
  13. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
    [Crossref]
  14. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  15. K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” Proc. SPIE 6770, 67700J (2007).
    [Crossref]
  16. Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
    [Crossref]
  17. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  18. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  19. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  20. A. Voskoboinik, A. E. Willner, and M. Tur, “Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer,” J. Lightwave Technol. 33(14), 2978–2985 (2015).
    [Crossref]
  21. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  22. Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
    [Crossref]
  23. I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  24. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  25. A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
    [Crossref]
  26. A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
    [Crossref]
  27. A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
    [Crossref] [PubMed]

2016 (1)

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

2015 (2)

A. Voskoboinik, A. E. Willner, and M. Tur, “Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer,” J. Lightwave Technol. 33(14), 2978–2985 (2015).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

2014 (6)

2013 (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

2012 (4)

2011 (4)

2009 (2)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

2007 (1)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” Proc. SPIE 6770, 67700J (2007).
[Crossref]

2002 (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 4(2), 179–181 (2002).
[Crossref]

1990 (1)

1989 (2)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Antman, Y.

Ba, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Bao, X.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

X. Bao and L. Chen, “High performance BOTDA for long range sensing,” Proc. SPIE 7982, 798206 (2011).
[Crossref]

Bernini, R.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Bolognini, G.

Chen, L.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “High performance BOTDA for long range sensing,” Proc. SPIE 7982, 798206 (2011).
[Crossref]

Chin, S.-H.

Cohen, R.

Corredera, P.

Coscetta, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
[Crossref]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Denisov, A.

L. Thévenaz, A. Denisov, and M. A. Soto, “Brillouin distributed fiber sensing at ultra-high spatial resolution,” in Photonics Conference (IPC, 2015), pp. 337–338.
[Crossref]

Di Pasquale, F.

Dong, Y.

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Gonzalez-Herraez, M.

Hadar, R.

He, Z.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
[Crossref]

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
[Crossref]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” Proc. SPIE 6770, 67700J (2007).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 4(2), 179–181 (2002).
[Crossref]

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Jiang, T.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Kimelfeld, N.

Kishi, M.

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Levanon, N.

Li, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Loayssa, A.

London, Y.

Lu, Z.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Martin-Lopez, S.

Minardo, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Mizuno, Y.

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
[Crossref]

Motil, A.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Peled, Y.

Rochat, E.

Sagues, M.

Song, K. Y.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” Proc. SPIE 6770, 67700J (2007).
[Crossref]

Soto, M. A.

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
[Crossref] [PubMed]

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 4(2), 179–181 (2002).
[Crossref]

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Thévenaz, L.

Tur, M.

Urricelqui, J.

Voskoboinik, A.

Willner, A. E.

Yaron, L.

Zadok, A.

Zeni, L.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Zhang, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Zhou, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhu, C.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zornoza, A.

Appl. Opt. (1)

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

IEEE Photonics J. (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (6)

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photonics Technol. Lett. 21(7), 474–476 (2009).
[Crossref]

A. Minardo, A. Coscetta, L. Zeni, and R. Bernini, “High-spatial resolution DPP-BOTDA by real-time balanced detection,” IEEE Photonics Technol. Lett. 26(12), 1251–1254 (2014).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 4(2), 179–181 (2002).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (2)

X. Bao and L. Chen, “High performance BOTDA for long range sensing,” Proc. SPIE 7982, 798206 (2011).
[Crossref]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” Proc. SPIE 6770, 67700J (2007).
[Crossref]

Other (2)

L. Thévenaz, A. Denisov, and M. A. Soto, “Brillouin distributed fiber sensing at ultra-high spatial resolution,” in Photonics Conference (IPC, 2015), pp. 337–338.
[Crossref]

K. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis and beat lock-in detection scheme,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Basic idea of the extension of measurement range by multi-slope assisted F-BOTDA.
Fig. 2
Fig. 2 (a) Sketch map of multi-slope assisted F-BOTDA; (b) time sequence diagram of the probe and pump.
Fig. 3
Fig. 3 Relations between the logarithmic ratio of the gain and the variation of the BFS. The FWHM of the BGS is 78MHz, corresponding to the FUT in the experiment below.
Fig. 4
Fig. 4 Width of the valid region for the calculation of the BFS for various Δ υ T , which is denoted via blue curve. A line with the slope coefficient of 1 is drawn for reference.
Fig. 5
Fig. 5 noise-induced error of the BFS for various Δ υ T , ranging from 10MHz to 80MHz. μ E and σ E are the average value of the deviation of gains and its standard deviation (unbiased estimator) of Gaussian noise. ( μ E = 0.0178, σ E = 0.0514) corresponds to the experimental results in the next section. The FWHM of the BGS is 78MHz.
Fig. 6
Fig. 6 Experimental setup of distributed dynamic sensing based on multi-slope assisted F-BOTDA (PC: polarization controller, EOM: electro-optic modulator, FBG: fiber Bragg grating, C: circulator, EDFA: erbium doped fiber amplifier, FUT: fiber under test, AWG: arbitrary waveform generator, PD: photodetector, OSC: oscilloscope).
Fig. 7
Fig. 7 Measured Brillouin gain spectrum with a FWHM of 78MHz.
Fig. 8
Fig. 8 Experimental results for the strain variation up to 5000µε with a frequency of 12.8Hz: the solid curve shows the measured BFS via multi-slope assisted F-BOTDA and the dotted curve shows the results obtained via curve-fitting based F-BOTDA with a step of 4MHz.
Fig. 9
Fig. 9 Measurement error of BFS as a function of Δ υ T
Fig. 10
Fig. 10 Measured BFS along the FUT.
Fig. 11
Fig. 11 Experimental results for the non-sine changed BFS: (a) the track of BFS in time domain and (b) its power spectrum. Δ υ T = 40MHz.
Fig. 12
Fig. 12 Measurement error of BFS as a function of Δ υ T for non-sine changed strain.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f AWG (t)= f 0 +[ t ΔT ] Δ υ T 2 .
υ 1 = υ P υ B0 +0.5Δ υ T υ 1 = υ P υ B0 0.5Δ υ T .
μ E = 1 n i=1 n ( g mi g ci ) σ E = 1 n1 i=1 n ( g mi g ci μ E ) 2 .
μ E_υ B = 1 n i=1 n | υ B_mi υ B_ci | σ E_υ B = 1 n1 i=1 n ( | υ B_mi υ B_ci | μ E_υ B ) 2 .
{ G υ PPm_0 10870+(j1)Δυ 4 +1 },j=1,2,3...
f max = c 4nL( Δ υ B_max Δ υ T +1 ) N avg .

Metrics