Abstract

We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of −25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber

Hangyu Bai, Xiong Yang, Yizhen Wei, and Shiming Gao
Appl. Opt. 55(3) 515-521 (2016)

Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers

Sida Xing, Davide Grassani, Svyatoslav Kharitonov, Laurent Brilland, Céline Caillaud, Johann Trolès, and Camille-Sophie Brès
Optica 4(6) 643-648 (2017)

Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber

Sy Dat Le, Duc Minh Nguyen, Monique Thual, Laurent Bramerie, Marcia Costa e Silva, Kevin Lenglé, Mathilde Gay, Thierry Chartier, Laurent Brilland, David Méchin, Perrine Toupin, and Johann Troles
Opt. Express 19(26) B653-B660 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
    [Crossref] [PubMed]
  2. J. Lesh, “Free space laser communications,” in Summaries of Papers Presented at theConference on Lasers and Electro-Optics,1999 (IEEE, 1999), pp. 316.
  3. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, vol. 102 (Springer, 2006).
  4. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [Crossref] [PubMed]
  5. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
    [Crossref] [PubMed]
  6. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
    [Crossref]
  7. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
    [Crossref] [PubMed]
  8. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  9. B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. Green, and G. Roelkens, “Generation of 3.6 μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39(6), 1349–1352 (2014).
    [Crossref] [PubMed]
  10. R. K. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
    [Crossref] [PubMed]
  11. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  12. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6(10), 667–671 (2012).
    [Crossref]
  13. C.-S. Brès, S. Zlatanovic, A. O. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
    [Crossref] [PubMed]
  14. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [Crossref] [PubMed]
  15. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  16. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
    [Crossref] [PubMed]
  17. areI. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref] [PubMed]
  18. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  19. T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23(4), 4125–4134 (2015).
    [Crossref] [PubMed]
  20. D. Grassani, S. Xing, S. Kharitonov, A. Billat, S. Cordette, A. Vedadi, and C.-S. Brès, “Continuous wave four-wave mixing at 2 micron in Chalcogenide microstructured fiber,” in Advanced Solid State Lasers (Optical Society of America, 2015), paper ATu3A. 6.
  21. G. Agrawal, “Chapter 10 - Four-Wave Mixing,” in Nonlinear Fiber Optics (Fifth Edition), G. Agrawal, ed. (Academic, 2013), pp. 397–456.
  22. N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [Crossref]
  23. S. Kharitonov, A. Billat, L. Zulliger, S. Cordette, A. Vedadi, and C.-S. Brès, “Kerr nonlinearity of Thulium-doped fiber near 2 μm,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper JTu5A. 31.
  24. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26(8), 488–490 (2001).
    [Crossref] [PubMed]
  25. O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J. C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
    [Crossref] [PubMed]
  26. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref] [PubMed]
  27. J. Fatome, C. Fortier, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
    [Crossref]
  28. P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2(10), 1359–1366 (2012).
    [Crossref]
  29. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  30. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref] [PubMed]
  31. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  32. S. D. Le, M. Gay, L. Bramerie, M. Costa e Silva, K. Lenglé, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber,” Opt. Lett. 37(22), 4576–4578 (2012).
    [Crossref] [PubMed]

2015 (2)

2014 (3)

2013 (1)

2012 (4)

2011 (5)

2010 (3)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

2009 (1)

2007 (1)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

2006 (2)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

2004 (1)

2001 (1)

2000 (1)

1994 (1)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

1987 (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Abdel-Moneim, N.

Adam, J. L.

Adam, J.-L.

Aggarwal, I. D.

Alic, N.

S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Amrani, F.

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Andrekson, P.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Baets, R.

Bang, O.

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Benson, T. M.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Bony, P.-Y.

Botten, L. C.

Bramerie, L.

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Brès, C.-S.

Brilland, L.

Calvez, L.

Canat, G.

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Chartier, T.

Cheng, T.

Cheong, S.-W.

Choi, D.-Y.

Copeland, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Costa e Silva, M.

Coulombier, Q.

Danicic, A.

Dantanarayana, H. G.

Davidson, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Debbarma, S.

Deng, D.

Desevedavy, F.

Désévédavy, F.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Duhant, M.

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Edwards, G.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

El Amraoui, M.

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Fatome, J.

Finot, C.

Fortier, C.

Foster, M. A.

Furniss, D.

Gadret, G.

Gaeta, A. L.

Gai, X.

Gao, W.

Gay, M.

Green, W. M.

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Guo, W.

Heintz, O.

Hodelin, J.

Houizot, P.

Hwang, H. Y.

Johnson, B.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Jules, J. C.

Jules, J.-C.

Katsufuji, T.

Kawashima, H.

Kibler, B.

Kohoutek, T.

Kubat, I.

Kuyken, B.

Lau, R. K.

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Le, S. D.

Lenglé, K.

Lenz, G.

Lesniewska, E.

Lines, M. E.

Lipson, M.

Liu, X.

Logan, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Luther-Davies, B.

Ma, P.

Maciunas, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Madden, S.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Martijn de Sterke, C.

McPhedran, R. C.

Mechin, D.

Méchin, D.

Ménard, M.

Mendenhall, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Messaad, K.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Moro, S.

S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Mouawad, O.

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Nguyen, D. M.

O’Day, D.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Ohishi, Y.

Okawachi, Y.

Osgood, R. M.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6(10), 667–671 (2012).
[Crossref]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
[Crossref] [PubMed]

Ossoff, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Picot-Clémente, J.

Pitois, S.

Qi, S.

Radic, S.

S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
[Crossref] [PubMed]

C.-S. Brès, S. Zlatanovic, A. O. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Reinisch, L.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Renard, W.

Renversez, G.

Roelkens, G.

Russell, P. S. J.

Salem, R.

Sanghera, J.

Sanghera, J. S.

Savelli, I.

Seddon, A. B.

Shaw, L. B.

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Simon, J.-C.

Slusher, R. E.

Smektala, F.

Sojka, L.

Spälter, S.

Steel, M. J.

Strutynski, C.

Sujecki, S.

Suzuki, T.

Tang, Z.

Tannouri, P.

Thual, M.

Torounidis, T.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

Toupin, P.

Traynor, N.

Tribble, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Troles, J.

Trolès, J.

Turner-Foster, A. C.

Usechak, N. G.

Van Campenhout, J.

Verheyen, P.

Waarts, R. G.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

Wang, R.

Werkhaven, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

White, T. P.

Wiberg, A. O.

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Xue, X.

Yang, Z.

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Yu, Y.

Zhai, C.

Zhang, B.

Zhang, L.

Zimmermann, J.

Zlatanovic, S.

C.-S. Brès, S. Zlatanovic, A. O. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19(9), 650–652 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (1)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: A free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Nat. Photonics (3)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6(10), 667–671 (2012).
[Crossref]

Nature (1)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O’Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[Crossref] [PubMed]

Opt. Express (8)

S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
[Crossref] [PubMed]

C.-S. Brès, S. Zlatanovic, A. O. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[Crossref] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref] [PubMed]

areI. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref] [PubMed]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J. C. Jules, O. Heintz, E. Lesniewska, and F. Smektala, “Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation,” Opt. Express 22(20), 23912–23919 (2014).
[Crossref] [PubMed]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref] [PubMed]

Opt. Lett. (7)

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26(8), 488–490 (2001).
[Crossref] [PubMed]

S. D. Le, M. Gay, L. Bramerie, M. Costa e Silva, K. Lenglé, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber,” Opt. Lett. 37(22), 4576–4578 (2012).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. M. Green, and G. Roelkens, “Generation of 3.6 μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39(6), 1349–1352 (2014).
[Crossref] [PubMed]

R. K. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Other (5)

D. Grassani, S. Xing, S. Kharitonov, A. Billat, S. Cordette, A. Vedadi, and C.-S. Brès, “Continuous wave four-wave mixing at 2 micron in Chalcogenide microstructured fiber,” in Advanced Solid State Lasers (Optical Society of America, 2015), paper ATu3A. 6.

G. Agrawal, “Chapter 10 - Four-Wave Mixing,” in Nonlinear Fiber Optics (Fifth Edition), G. Agrawal, ed. (Academic, 2013), pp. 397–456.

S. Kharitonov, A. Billat, L. Zulliger, S. Cordette, A. Vedadi, and C.-S. Brès, “Kerr nonlinearity of Thulium-doped fiber near 2 μm,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper JTu5A. 31.

J. Lesh, “Free space laser communications,” in Summaries of Papers Presented at theConference on Lasers and Electro-Optics,1999 (IEEE, 1999), pp. 316.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, vol. 102 (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental set-up for FWM measurement. (b) An example of FWM spectrum taken at a pump power of 54 mW and signal power of about 6 mW. The inset shows a colormap of idler generation at the Stokes and anti-Stokes sides for the pump at 1981 nm and swept signal from 1950 nm to 1978 nm.
Fig. 2
Fig. 2 Dispersion parameter as a function of the wavelength for FUT1. Inset: SEM image of the cross section of the FUT1.
Fig. 3
Fig. 3 (a) CE as a function of coupled pump power and theoretical fit of a quadratic polynomial. (b) Idler output power as a function of the signal input power for a coupled pump power of 16 dBm and theoretical fit of a linear polynomial. Error bars are calculated by standard error propagation considering uncertainty on pump and signal lasers of 0.5 dB. (c) CE as a function of generated idler wavelength for three coupled pump powers. (d) CE for three coupled pump powers normalized to pump power squared and superimposed to the theoretical CE/Pp2 plotted with different linear losses values.
Fig. 4
Fig. 4 Dispersion parameter as a function of the wavelength for FUT2. Inset: SEM image of the cross section of the FUT2.
Fig. 5
Fig. 5 Experimental CE superimposed to theoretical fits as a function of idler wavelength for pump at (a) 1565 nm, (b) 1981 nm and (c) 2008 nm. (d) CE as a function of the coupled pump power for 1981 nm pump and pump-signal detuning of 6 nm. Error bars are calculated considering 0.5 dB uncertainty on the input lasers power. The red curve is the theoretical fit.
Fig. 6
Fig. 6 (a) Dispersion of the r = 0.66 with 4 μm core diameter (red) and the corresponding tapered fiber, with a core diameter of 1.5 μm (blue). (b) Structure of the tapered PCF under simulation.
Fig. 7
Fig. 7 The simulated CE plot with pump wavelengths at 1.964 µm and 1953 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δk+2γP β 2 Δ ω 2 + 1 12 β 4 Δ ω 4 +2γP=0.
CE= P i P s =ε ( γ P p ) 2 ( 1 e αL α ) 2
ε= α 2 α 2 +Δ k 2 ( 4 e αL sin 2 (ΔkL/2) (14 e αL ) 2 )
ϕ=( 2Λd )T=( 2 r 1 )dT

Metrics